The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214992 Power ceiling-floor sequence of (golden ratio)^4. 20
 7, 47, 323, 2213, 15169, 103969, 712615, 4884335, 33477731, 229459781, 1572740737, 10779725377, 73885336903, 506417632943, 3471038093699, 23790849022949, 163064905066945, 1117663486445665, 7660579500052711 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Let f = floor and c = ceiling. For x > 1, define four sequences as functions of x, as follows: p1(0) = f(x), p1(n) = f(x*p1(n-1)); p2(0) = f(x), p2(n) = c(x*p2(n-1)) if n is odd and p2(n) = f(x*p1(n-1)) if n is even; p3(0) = c(x), p3(n) = f(x*p3(n-1)) if n is odd and p3(n) = c(x*p3(n-1)) if n is even; p4(0) = c(x), p4(n) = c(x*p4(n-1)). The present sequence is given by a(n) = p3(n). Following the terminology at A214986, call the four sequences power floor, power floor-ceiling, power ceiling-floor, and power ceiling sequences. In the table below, a sequence is identified with an A-numbered sequence if they appear to agree except possibly for initial terms. Notation: S(t)=sqrt(t), r = (1+S(5))/2 = golden ratio, and Limit = limit of p3(n)/p2(n). x ......p1..... p2..... p3..... p4.......Limit r.......A000045 A000045 A000045 A000045..r r^2.....A001519 A001654 A061646 A001906..-1+S(5) r^3.....A024551 A001076 A015448 A049652..-1+S(5) r^4.....A049685 A157335 A214992 A004187..-19+9*S(5) r^5.....A214993 A049666 A015457 A214994...(-9+5*S(5))/2 r^6.....A007805 A156085 A214995 A049660..-151+68*S(5) 1+S(2)..A024537 A000129 A001333 A048739..S(2) 2+S(2)..A007052 A214996 A214997 A007070..(1+S(2))/2 1+S(3)..A057960 A002605 A028859 A077846..(1+S(3))/2 2+S(3)..A001835 A109437 A214998 A001353..-4+3*S(3) S(5)....A214999 A215091 A218982 A218983..1.26879683... 2+S(5)..A024551 A001076 A015448 A049652..-1+S(5) 2+S(6)..A218984 A090017 A123347 A218985..S(3/2) 2+S(7)..A218986 A015530 A126473 A218987..(1+S(7))/3 2+S(8)..A218988 A057087 A086347 A218989..(1+S(2))/2 3+S(8)..A001653 A084158 A218990 A001109..-13+10*S(2) 3+S(10).A218991 A005668 A015451 A218992..-2+S(10) ... Properties of p1, p2, p3, p4: (1) If x > 2, the terms of p2 and p3 interlace: p2(0) < p3(0) < p2(1) < p3(1) < p2(2) < p3(2)... Also, p1(n) <= p2(n) <= p3(n) <= p4(n) <= p1(n+1) for all x>0 and n>=0. (2) If x > 2, the limits L(x) = limit(p/x^n) exist for the four functions p(x), and L1(x) <= L2(x) <= L3(x) <= L4 (x). See the Mathematica programs for plots of the four functions; one of them also occurs in the Odlyzko and Wilf article, along with a discussion of the special case x = 3/2. (3) Suppose that x = u + sqrt(v) where v is a nonsquare positive integer. If u = f(x) or u = c(x), then p1, p2, p3, p4 are linear recurrence sequences. Is this true for sequences p1, p2, p3, p4 obtained from x = (u + sqrt(v))^q for every positive integer q? (4) Suppose that x is a Pisot-Vijayaraghavan number. Must p1, p2, p3, p4 then be linearly recurrent? If x is also a quadratic irrational b + c*sqrt(d), must the four limits L(x) be in the field Q(sqrt(d))? (5) The Odlyzko and Wilf article (page 239) raises three interesting questions about the power ceiling function; it appears that they remain open. LINKS Clark Kimberling, Table of n, a(n) for n = 0..250 A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33, 235-240, 1991. Index entries for linear recurrences with constant coefficients, signature (6,6,-1). FORMULA a(n) = floor(r*a(n-1) if n is odd and a(n) = ceiling(r*a(n-1) if n is even, where a(0) = ceiling(r), r = (golden ratio)^4 = (7 + sqrt(5))/2. a(n) = 6*a(n-1) + 6*a(n-2) - a(n-3). G.f.: (7 + 5*x - x^2)/(1 - 6*x - 6*x^2 + x^3). a(n) = (10*(-2)^n+(10+3*sqrt(5))*(7-3*sqrt(5))^(n+2)+(10-3*sqrt(5))*(7+3*sqrt(5))^(n+2))/(90*2^n). - Bruno Berselli, Nov 14 2012 a(n) = 7*A157335(n) + 5*A157335(n-1) - A157335(n-2). - R. J. Mathar, Feb 05 2020 EXAMPLE a(0) = ceiling(r) = 7, where r = (1+sqrt(5))/2)^4 = 6.8...; a(1) = floor(7*r) = 47; a(2) = ceiling(47) = 323. MATHEMATICA (* Program 1. A214992 and related sequences *) x = GoldenRatio^4; z = 30; (* z = # terms in sequences *) z1 = 100; (* z1 = # digits in approximations *) f[x_] := Floor[x]; c[x_] := Ceiling[x]; p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x]; p1[n_] := f[x*p1[n - 1]] p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]] p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]] p4[n_] := c[x*p4[n - 1]] Table[p1[n], {n, 0, z}] (* A049685 *) Table[p2[n], {n, 0, z}] (* A157335 *) Table[p3[n], {n, 0, z}] (* A214992 *) Table[p4[n], {n, 0, z}] (* A004187 *) Table[p4[n] - p1[n], {n, 0, z}] (* A004187 *) Table[p3[n] - p2[n], {n, 0, z}] (* A098305 *) (* Program 2. Plot of power floor and power ceiling functions, p1(x) and p4(x) *) f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x]; p1[x_, 0] := f[x]; p1[x_, n_] := f[x*p1[x, n - 1]]; p4[x_, 0] := c[x]; p4[x_, n_] := c[x*p4[x, n - 1]]; Plot[Evaluate[{p1[x, 10]/x^10, p4[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}] (* Program 3. Plot of power floor-ceiling and power ceiling-floor functions, p2(x) and p3(x) *) f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x]; p2[x_, 0] := f[x]; p3[x_, 0] := c[x]; p2[x_, n_] := If[Mod[n, 2] == 1, c[x*p2[x, n - 1]], f[x*p2[x, n - 1]]] p3[x_, n_] := If[Mod[n, 2] == 1, f[x*p3[x, n - 1]], c[x*p3[x, n - 1]]] Plot[Evaluate[{p2[x, 10]/x^10, p3[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}] CROSSREFS Cf. A001622, A214986, A049685, A157335, A004187. Sequence in context: A186446 A244830 A126528 * A241364 A098405 A104092 Adjacent sequences: A214989 A214990 A214991 * A214993 A214994 A214995 KEYWORD nonn,easy AUTHOR Clark Kimberling, Nov 08 2012, Jan 24 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 22:57 EDT 2023. Contains 361392 sequences. (Running on oeis4.)