login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015448 a(0)=1, a(1)=1, and a(n) = 4*a(n-1) + a(n-2) for n>=2. 41
1, 1, 5, 21, 89, 377, 1597, 6765, 28657, 121393, 514229, 2178309, 9227465, 39088169, 165580141, 701408733, 2971215073, 12586269025, 53316291173, 225851433717, 956722026041, 4052739537881, 17167680177565, 72723460248141, 308061521170129, 1304969544928657, 5527939700884757 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = A167808(3*n-1) for n>0. - Reinhard Zumkeller, Nov 12 2009

If one deletes the leading 0 in A084326, takes the inverse binomial transform, and adds a(0)=1 in front, one obtains this sequence here. - Al Hakanson (hawkuu(AT)gmail.com), May 02 2009

For n>=1, row sums of triangle

m/k.|..0.....1.....2.....3.....4.....5.....6.....7

==================================================

.0..|..1

.1..|..1.....4

.2..|..1.....4....16

.3..|..1.....8....16......64

.4..|..1.....8....48......64...256

.5..|..1....12....48.....256...256...1024

.6..|..1....12....96.....256..1280...1024...4096

.7..|..1....16....96.....640..1280...6144...4096...16384

which is triangle for numbers 4^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012

a(n) = a(n;-2) = 3^n sum_{k=0..n} C(n,k) F(k+1) (-2/3)^k, where a(n;d), n=0,1,..., d, denote the delta-Fibonacci numbers defined in comments to A000045 (see also the papers of Witula et al.). We note that (see A033887) F(3n+1)=3^n a(n,2/3) = sum_{k=0..n} C(n,k) F(k-1) (-2/3)^k, which implies F(3n+1) + 3^(-n) a(n) = sum_{k=0}^{n} C(n,k) L(k) (-2/3)^k, where L(k) denote the k-th Lucas number. - Roman Witula, Jul 12 2012

a(n+1) is (for n>=0) the number of length-n strings of 5 letters {0,1,2,3,4} with no two adjacent nonzero letters identical. The general case (strings of L letters) is the sequence with g.f. (1+x)/(1-(L-1)*x-x^2). - Joerg Arndt, Oct 11 2012

Starting with offset 1 the sequence is the INVERT transform of (1, 4, 4*3, 4*3^2, 4*3^3,...); i.e. of A003946: (1, 4, 12, 36, 108,...). - Gary W. Adamson, Aug 06 2016

REFERENCES

D. Chmiela, K. Kaczmarek, R. Witula, Binomials Transformation Formulae of Scaled Fibonacci Numbers, (submitted to Fibonacci Quart. 2012).

LINKS

T. D. Noe, Table of n, a(n) for n=0..200

Joerg Arndt, Matters Computational (The Fxtbook), pp. 313-315.

Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (see Corollary 1 (vi)).

M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, 2014; http://matinf.pmfbl.org/wp-content/uploads/2015/01/za-arhiv-18.-1.pdf

Tanya Khovanova, Recursive Sequences

R. Witula, Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math 3 (2009) 310-329, MR2555042

Index entries for linear recurrences with constant coefficients, signature (4,1).

FORMULA

a(n) = Fibonacci(3n-1) = ( (1+sqrt(5))*(2-sqrt(5))^n - (1-sqrt(5))*(2+sqrt(5))^n )/ (2*sqrt(5)).

O.g.f.: (1-3*x)/(1-4*x-x^2). - Len Smiley, Dec 09 2001

a(n) = Sum_{k, 0<=k<=n}3^k*A055830(n,k). - Philippe Deléham, Oct 18 2006

a(n) = upper left term in the 2 X 2 matrix [1,2; 2,3]^n. - Gary W. Adamson, Mar 02 2008

[a(n), A001076(n)] = [1,4; 1,3]^n * [1,0]. - Gary W. Adamson, Mar 21 2008

a(n) = Fibonacci(3n+1) mod Fibonacci(3n), n>0

a(n) = (A000032(3*n)-Fibonacci(3*n))/2 = (A014448(n)-A014445(n)/2.

For n>=2, a(n)=F_n(4)+F_(n+1)(4), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x)=sum{i=0,...,floor((n-1)/2)}C(n-i-1,i)x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012

a(n) = A001076(n+1) - 3*A001076(n). - R. J. Mathar, Jul 12 2012

From Gary Detlefs and Wolfdieter Lang, Aug 20 2012: (Start)

a(n) = (5*F(n)^3 + 5*F(n-1)^3 + 3*(-1)^n*F(n-2))/2,

a(n) = (F(n+1)^3 + 2*F(n)^3 - F(n-2)^3)/2, n >= 0, with F(-1) = 1 and F(-2) = -1. Second line from first one with 3*(-1)^n* F(n-2) = F(n-1)^3 - 4*F(n-2)^3 - F(n-3)^3 (in Koshy's book, p. 89, 32. (with a - sign) and 33. For the Koshy reference see A000045) and the F^3 recurrence (see row n=4 of A055870, or Koshy p. 87, 1.). First line from the preceding R. J. Mathar formula with F(3*n) = 5*F(n)^3 + 3*(-1)^n*F(n) (Koshy p. 89, 46.) and the above mentioned formula, Koshy's 32. and 33., with n -> n+2 in order to eliminate F(n+1)^3.  (End)

For n>0 a(n) = L(n-1)*L(n)*F(n) + F(n+1)*(-1)^n with L(n)=A000032(n). - J. M. Bergot, Dec 10 2015

MAPLE

with(combinat): a:=n->fibonacci(n, 4)-3*fibonacci(n-1, 4): seq(a(n), n=1..23); # Zerinvary Lajos, Apr 04 2008

MATHEMATICA

Fibonacci/@(3*Range[0, 30]-1) (* Vladimir Joseph Stephan Orlovsky, Mar 01 2010 *)

PROG

(Maxima)

a[0]:1$

a[1]:1$

a[n]:=4*a[n-1]+a[n-2]$

A015448(n):=a[n]$

makelist(A015448(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */

(MAGMA) [Fibonacci(3*n-1): n in [0..40]]; // Vincenzo Librandi, Jul 04 2015

(PARI) a(n) = fibonacci(3*n-1); \\ Altug Alkan, Dec 10 2015

CROSSREFS

Cf. A001076, A147722 (INVERT transform), A109499 (INVERTi transform), A154626 (Binomial transform), A086344 (inverse binomial transform), A003946.

Sequence in context: A240461 A273860 A099843 * A273796 A035011 A113987

Adjacent sequences:  A015445 A015446 A015447 * A015449 A015450 A015451

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 23 23:53 EDT 2017. Contains 286937 sequences.