login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109499 Number of closed walks of length n on the complete graph on 5 nodes from a given node. 17
1, 0, 4, 12, 52, 204, 820, 3276, 13108, 52428, 209716, 838860, 3355444, 13421772, 53687092, 214748364, 858993460, 3435973836, 13743895348, 54975581388, 219902325556, 879609302220, 3518437208884, 14073748835532 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,4).

FORMULA

G.f.: (1 - 3*x)/(1 - 3*x - 4*x^2).

a(n) = (4^n + 4*(-1)^n)/5.

a(n+1) = 4*A015521(n). - Paul Curtz, Nov 01 2009

a(n) = 3*a(n-1) + 4*a(n-1). - G. C. Greubel, Dec 30 2017

MATHEMATICA

k=0; lst={k}; Do[k=4^n-k; AppendTo[lst, k], {n, 1, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)

CoefficientList[Series[(1 - 3*x)/(1 - 3*x - 4*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{3, 4}, {1, 0}, ] (* G. C. Greubel, Dec 30 2017 *)

PROG

(MAGMA) [(4^n + 4*(-1)^n)/5: n in [0..30]]; // Vincenzo Librandi, Aug 12 2011

(PARI) a(n)=(4^n+4*(-1)^n)/5 \\ Charles R Greathouse IV, Oct 01 2012

CROSSREFS

Cf. A109502.

Cf. A001045, A078008, A097073, A115341, A015518, A054878, A015521 (forms k=4^n-k). - Vladimir Joseph Stephan Orlovsky, Dec 11 2008

Sequence in context: A149411 A149412 A259274 * A282587 A188230 A124006

Adjacent sequences:  A109496 A109497 A109498 * A109500 A109501 A109502

KEYWORD

nonn,easy,walk

AUTHOR

Mitch Harris, Jun 30 2005

EXTENSIONS

Corrected by Franklin T. Adams-Watters, Sep 18 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 09:36 EST 2018. Contains 299448 sequences. (Running on oeis4.)