login
A109498
Number of closed walks of length 2n on the Heawood graph from a given node.
1
1, 3, 15, 111, 951, 8463, 75975, 683391, 6149751, 55346223, 498112935, 4483010271, 40347080151, 363123696783, 3268113221895, 29413018898751, 264717169892151, 2382454528636143, 21442090756938855
OFFSET
0,2
FORMULA
O.g.f.: ( 1-8*x ) / ( (9*x-1)*(2*x-1) ).
a(n) = (9^n + 6*2^n)/7.
a(n) = A106133(n) - 8*A016133(n-1).
MATHEMATICA
CoefficientList[Series[(1 - 8*x)/((9*x - 1)*(2*x - 1)), {x, 0, 50}], x] (* or *) LinearRecurrence[{11, -18}, {1, 3}, 30] (* G. C. Greubel, Dec 30 2017 *)
PROG
(PARI) x='x+O('x^30); Vec((1 - 8*x)/((9*x - 1)*(2*x - 1))) \\ G. C. Greubel, Dec 30 2017
(Magma) I:=[1, 3]; [n le 2 select I[n] else 11*Self(n-1) - 18*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 30 2017
CROSSREFS
Sequence in context: A090355 A083483 A089468 * A142967 A360864 A201339
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jun 30 2005
STATUS
approved