login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109500 Number of closed walks of length n on the complete graph on 6 nodes from a given node. 12
1, 0, 5, 20, 105, 520, 2605, 13020, 65105, 325520, 1627605, 8138020, 40690105, 203450520, 1017252605, 5086263020, 25431315105, 127156575520, 635782877605, 3178914388020, 15894571940105, 79472859700520 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.

Index entries for linear recurrences with constant coefficients, signature (4,5).

FORMULA

G.f.: (1 - 4*x)/(1 - 4*x - 5*x^2).

a(n) = (5^n + 5*(-1)^n)/6.

a(n) = 5^(n-1) - a(n-1), a(0) = 1. - Jon E. Schoenfield, Feb 08 2015

MATHEMATICA

k=0; lst={k}; Do[k=5^n-k; AppendTo[lst, k], {n, 1, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)

CoefficientList[Series[(1 - 4*x)/(1 - 4*x - 5*x^2), {x, 0, 50}], x] (* or *) Table[(5^n + 5*(-1)^n)/6, {n, 0, 30}] (* G. C. Greubel, Dec 30 2017 *)

PROG

(PARI) for(n=0, 30, print1((5^n + 5*(-1)^n)/6, ", ")) \\ G. C. Greubel, Dec 30 2017

(MAGMA) [(5^n + 5*(-1)^n)/6: n in [0..30]]; // G. C. Greubel, Dec 30 2017

CROSSREFS

Cf. A109502.

Cf. sequences with the same recurrence form: A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499, A015531. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008

Sequence in context: A276314 A292358 A259275 * A137961 A167145 A277032

Adjacent sequences:  A109497 A109498 A109499 * A109501 A109502 A109503

KEYWORD

nonn,easy

AUTHOR

Mitch Harris, Jun 30 2005

EXTENSIONS

Corrected by Franklin T. Adams-Watters, Sep 18 2006

Edited by Jon E. Schoenfield, Feb 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 22:48 EDT 2018. Contains 316297 sequences. (Running on oeis4.)