The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201339 Expansion of e.g.f. exp(x) / (3 - 2*exp(x)). 14
1, 3, 15, 111, 1095, 13503, 199815, 3449631, 68062695, 1510769343, 37260156615, 1010843385951, 29916558512295, 959183053936383, 33118910817665415, 1225219266296167071, 48348200298184769895, 2027102674516399522623, 89990106205541777926215, 4216915299772659459872991 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
O.g.f.: A(x) = Sum_{n>=0} n! * 3^n*x^n / Product_{k=0..n} (1+k*x).
O.g.f.: A(x) = 1/(1 - 3*x/(1-2*x/(1 - 6*x/(1-4*x/(1 - 9*x/(1-6*x/(1 - 12*x/(1-8*x/(1 - 15*x/(1-10*x/(1 - ...)))))))))), a continued fraction.
a(n) = Sum_{k=0..n} (-1)^(n-k) * 3^k * Stirling2(n,k) * k!.
a(n) = 3*A050351(n) for n>0.
a(n) = Sum_{k=0..n} A123125(n,k)*3^k*2^(n-k). - Philippe Deléham, Nov 30 2011
a(n) ~ n! / (2*log(3/2)^(n+1)). - Vaclav Kotesovec, Jun 13 2013
a(n) = log(3/2) * Integral_{x = 0..oo} (ceiling(x))^n * (3/2)^(-x) dx. - Peter Bala, Feb 06 2015
a(n) = 1 + 2 * Sum_{k=0..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(0) = 1; a(n) = -3*Sum_{k=1..n} (-1)^k * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 3*a(n-1) + 2*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)
a(n) = (3/2)*A004123(n+1) - (1/2)*0^n. - Seiichi Manyama, Dec 21 2023
EXAMPLE
E.g.f.: E(x) = 1 + 3*x + 15*x^2/2! + 111*x^3/3! + 1095*x^4/4! + 13503*x^5/5! + ...
O.g.f.: A(x) = 1 + 3*x + 15*x^2 + 111*x^3 + 1095*x^4 + 13503*x^5 + ...
where A(x) = 1 + 3*x/(1+x) + 2!*3^2*x^2/((1+x)*(1+2*x)) + 3!*3^3*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*3^4*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
MAPLE
seq(coeff(series( 1/(3*exp(-x) -2) , x, n+1)*n!, x, n), n = 0..30); # G. C. Greubel, Jun 08 2020
MATHEMATICA
Table[Sum[(-1)^(n-k)*3^k*StirlingS2[n, k]*k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 13 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(x+x*O(x^n))/(3 - 2*exp(x+x*O(x^n))), n)}
(PARI) {a(n)=polcoeff(sum(m=0, n, 3^m*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
(PARI) {Stirling2(n, k)=if(k<0|k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}
{a(n)=sum(k=0, n, (-1)^(n-k)*3^k*Stirling2(n, k)*k!)}
(Magma) [&+[(-1)^(n-j)*3^j*Factorial(j)*StirlingSecond(n, j): j in [0..n]]: n in [0..20]]; // G. C. Greubel, Jun 08 2020
(Sage) [sum( (-1)^(n-j)*3^j*factorial(j)*stirling_number2(n, j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jun 08 2020
CROSSREFS
Sequence in context: A109498 A142967 A360864 * A370877 A254789 A112936
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 30 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 16:36 EDT 2024. Contains 372765 sequences. (Running on oeis4.)