OFFSET
1,2
FORMULA
E.g.f.: G(G(x)) where G(x) = log(1/(2-exp(x))) is an e.g.f. of A000629 (with offset 1), where A000629(n) is the number of necklaces of partitions of n+1 labeled beads.
E.g.f.: log(1+x) o x/(1-2*x) o exp(x)-1, a composition of functions.
a(n) ~ (n-1)! * (1/log(3/2))^n. - Vaclav Kotesovec, May 23 2013
EXAMPLE
E.g.f.: A(x) = x + 4*x^2/2! + 24*x^3/3! + 196*x^4/4! + 2040*x^5/5! +...
Note that A(x) = G(G(x)) where G(x) is an e.g.f. of A000629:
G(x) = x + 2*x^2/2! + 6*x^3/3! + 26*x^4/4! + 150*x^5/5! + 1082*x^6/6! +...
MATHEMATICA
Rest[CoefficientList[Series[Log[(2-E^x)/(3-2*E^x)], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, May 23 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(log((2-exp(x+x*O(x^n)))/(3-2*exp(x+x*O(x^n)))), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 03 2011
STATUS
approved