login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201338
E.g.f.: log((2 - exp(x))/(3 - 2*exp(x))).
2
1, 4, 24, 196, 2040, 25924, 390264, 6804676, 135033720, 3007364164, 74315818104, 2018441506756, 59776933889400, 1917312391176004, 66216538949389944, 2449977966210378436, 96685769287005577080, 4053944607498740773444, 179973441341757042161784, 8433644996370680262923716
OFFSET
1,2
FORMULA
E.g.f.: G(G(x)) where G(x) = log(1/(2-exp(x))) is an e.g.f. of A000629 (with offset 1), where A000629(n) is the number of necklaces of partitions of n+1 labeled beads.
E.g.f.: log(1+x) o x/(1-2*x) o exp(x)-1, a composition of functions.
a(n) ~ (n-1)! * (1/log(3/2))^n. - Vaclav Kotesovec, May 23 2013
EXAMPLE
E.g.f.: A(x) = x + 4*x^2/2! + 24*x^3/3! + 196*x^4/4! + 2040*x^5/5! +...
Note that A(x) = G(G(x)) where G(x) is an e.g.f. of A000629:
G(x) = x + 2*x^2/2! + 6*x^3/3! + 26*x^4/4! + 150*x^5/5! + 1082*x^6/6! +...
MATHEMATICA
Rest[CoefficientList[Series[Log[(2-E^x)/(3-2*E^x)], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, May 23 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(log((2-exp(x+x*O(x^n)))/(3-2*exp(x+x*O(x^n)))), n)}
CROSSREFS
Sequence in context: A219530 A291819 A101370 * A362355 A099021 A220690
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 03 2011
STATUS
approved