login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220690
Number of acyclic graphs on {1,2,...,n} such that the node with label 1 is in the same connected component (tree) as the node with label 2.
2
0, 0, 1, 4, 24, 198, 2110, 27768, 436656, 8003950, 167779068, 3961727820, 104102329504, 3013887239454, 95338047836520, 3272043459321328, 121106541865151040, 4808924948167249302, 203931444227955436816, 9198925314402386788500, 439809753701222702598528
OFFSET
0,4
LINKS
FORMULA
E.g.f.: Double integral of U''(x)*exp(U(x)) dx^2 where U(x) is the e.g.f. for A000272.
a(n) = Sum_{k=0..n-2} binomial(n-2,k)*(k+2)^k*A001858(n-k-2).
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j) *(j+1)^(j-1) *b(n-1-j), j=0..n-1))
end:
a:= n-> add(binomial(n-2, k)*(k+2)^k*b(n-k-2), k=0..n-2):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 13 2013
MATHEMATICA
nn=20; u=Sum[n^(n-2)x^n/n!, {n, 1, nn}]; Range[0, nn]!CoefficientList[ Series[Integrate[Integrate[D[D[u, x], x]Exp[u], x], x], {x, 0, nn}], x]
PROG
(PARI)
N = 66; x = 'x + O('x^N);
U = sum(n=1, N, n^(n-2)*x^n/n!);
egf = intformal(intformal( deriv(deriv(U)) * exp(U) ));
gf = serlaplace(egf) + 'c0;
v = Vec(gf); v[1]-='c0; v
/* Joerg Arndt, Apr 13 2013 */
CROSSREFS
Cf. A221864.
Sequence in context: A201338 A362355 A099021 * A136229 A138419 A366341
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Apr 13 2013
STATUS
approved