login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050351 Number of 3-level labeled linear rooted trees with n leaves. 26
1, 1, 5, 37, 365, 4501, 66605, 1149877, 22687565, 503589781, 12420052205, 336947795317, 9972186170765, 319727684645461, 11039636939221805, 408406422098722357, 16116066766061589965, 675700891505466507541 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Lists of lists of sets.
REFERENCES
T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
LINKS
Robert Gill, The number of elements in a generalized partition semilattice, Discrete mathematics 186.1-3 (1998): 125-134. See Example 1.
S. Giraudo, Combinatorial operads from monoids, arXiv preprint arXiv:1306.6938 [math.CO], 2013.
Marian Muresan, A concrete approach to classical analysis, CMS Books in Mathematics (2009) Table 10.2
Norihiro Nakashima, Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
FORMULA
E.g.f.: (2-exp(x))/(3-2*exp(x)).
a(n) is asymptotic to (1/6)*n!/log(3/2)^(n+1). - Benoit Cloitre, Jan 30 2003
For m-level trees (m>1), e.g.f. is (m-1-(m-2)*e^x)/(m-(m-1)*e^x) and number of trees is 1/(m*(m-1))*sum(k>=0, (1-1/m)^k*k^n). Here m=3, so a(n)=(1/6)*sum(k>=0, (2/3)^k*k^n) (for n>0). - Benoit Cloitre, Jan 30 2003
a(n) = Sum_{k=1..n} Stirling2(n, k)*k!*2^(k-1). - Vladeta Jovovic, Sep 28 2003
Recurrence: a(n+1) = 1 + 2*sum { j=1, n, (binomial(n+1, j)*a(j) }. - Jon Perry, Apr 25 2005
With p(n) = the number of integer partitions of n, p(i) = the number of parts of the i-th partition of n, d(i) = the number of different parts of the i-th partition of n, p(j, i) = the j-th part of the i-th partition of n, m(i, j) = multiplicity of the j-th part of the i-th partition of n, sum_{i=1}^{p(n)} = sum over i and prod_{j=1}^{d(i)} = product over j one has: a(n)=sum_{i=1}^{p(n)}(n!/(prod_{j=1}^{p(i)}p(i, j)!))*(p(i)!/(prod_{j=1}^{d(i)} m(i, j)!))*2^(p(i)-1). - Thomas Wieder, May 18 2005
Let f(x) = (1+x)*(1+2*x). Let D be the operator g(x) -> d/dx(f(x)*g(x)). Then for n>=1, a(n) = D^(n-1)(1) evaluated at x = 1/2. Compare with the result A000670(n) = D^(n-1)(1) at x = 0. See also A194649. - Peter Bala, Sep 05 2011
E.g.f.: 1 + x/(G(0)-3*x) where G(k)= x + k + 1 - x*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 11 2012
a(n) = (1/6) * Sum_{k>=1} k^n * (2/3)^k for n>0. - Paul D. Hanna, Nov 28 2014
E.g.f. A(x) satisifes 0 = 2 - A'(x) - 7*A(x) + 6*A(x)^2. - Michael Somos, Nov 28 2014
EXAMPLE
G.f. = 1 + x + 5*x^2 + 37*x^3 + 365*x^4 + 4501*x^5 + 66605*x^6 + ...
MAPLE
with(combstruct); SeqSeqSetL := [T, {T=Sequence(S), S=Sequence(U, card >= 1), U=Set(Z, card >=1)}, labeled];
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(2-E^x)/(3-2*E^x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Feb 29 2012 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1/(2 - 1/(2 - Exp[x])), {x, 0, n}]]; (* Michael Somos, Nov 28 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( 1/(2 - 1/(2 - exp(x + x * O(x^n)))), n))};
(PARI) {a(n)=if(n==0, 1, (1/6)*round(suminf(k=1, k^n * (2/3)^k *1.)))} \\ Paul D. Hanna, Nov 28 2014
(Sage)
A050351 = lambda n: sum(stirling_number2(n, k)*(2^(k-1))*factorial(k) for k in (0..n)) if n>0 else 1
[A050351(n) for n in (0..17)] # Peter Luschny, Jan 18 2016
CROSSREFS
Equals 1/2 * A004123(n) for n>0.
Sequence in context: A344051 A025168 A084358 * A129137 A357397 A276232
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 14:54 EDT 2024. Contains 371960 sequences. (Running on oeis4.)