login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357397
a(n) = coefficient of x^n, n >= 0, in A(x) such that: 0 = Sum_{n>=1} ((1+x)^n - A(x))^n / (1+x)^(n^2).
2
1, 1, 1, 5, 37, 367, 4463, 63797, 1043961, 19208815, 392278493, 8802891869, 215335062049, 5704017709585, 162695460126735, 4972552233126827, 162156046298476305, 5620675413587870585, 206382551428754263839, 8003189847508668434429
OFFSET
0,4
COMMENTS
All terms appear to be odd.
LINKS
EXAMPLE
G.f.: A(X) = 1 + x + x^2 + 5*x^3 + 37*x^4 + 367*x^5 + 4463*x^6 + 63797*x^7 + 1043961*x^8 + 19208815*x^9 + 392278493*x^10 + ...
where
0 = ((1+x) - A(x))/(1+x) + ((1+x)^2 - A(x))^2/(1+x)^4 + ((1+x)^3 - A(x))^3/(1+x)^9 + ((1+x)^4 - A(x))^4/(1+x)^16 + ((1+x)^5 - A(x))^5/(1+x)^25 + ... + ((1+x)^n - A(x))^n/(1+x)^(n^2) + ...
equivalently,
0 = (1 - A(x)/(1+x)) + (1 - A(x)/(1+x)^2)^2 + (1 - A(x)/(1+x)^3)^3 + (1 - A(x)/(1+x)^4)^4 + (1 - A(x)/(1+x)^5)^5 + ... + (1 - A(x)/(1+x)^n)^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=1, #A-1, ((1+x)^m - Ser(A))^m/(1+x +x*O(x^#A) )^(m^2) ), #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A357398.
Sequence in context: A084358 A050351 A129137 * A276232 A055869 A208231
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 20 2022
STATUS
approved