OFFSET
0,4
COMMENTS
All terms appear to be odd.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..300
EXAMPLE
G.f.: A(X) = 1 + x + x^2 + 5*x^3 + 37*x^4 + 367*x^5 + 4463*x^6 + 63797*x^7 + 1043961*x^8 + 19208815*x^9 + 392278493*x^10 + ...
where
0 = ((1+x) - A(x))/(1+x) + ((1+x)^2 - A(x))^2/(1+x)^4 + ((1+x)^3 - A(x))^3/(1+x)^9 + ((1+x)^4 - A(x))^4/(1+x)^16 + ((1+x)^5 - A(x))^5/(1+x)^25 + ... + ((1+x)^n - A(x))^n/(1+x)^(n^2) + ...
equivalently,
0 = (1 - A(x)/(1+x)) + (1 - A(x)/(1+x)^2)^2 + (1 - A(x)/(1+x)^3)^3 + (1 - A(x)/(1+x)^4)^4 + (1 - A(x)/(1+x)^5)^5 + ... + (1 - A(x)/(1+x)^n)^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=1, #A-1, ((1+x)^m - Ser(A))^m/(1+x +x*O(x^#A) )^(m^2) ), #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 20 2022
STATUS
approved