login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357400
Coefficients T(n,k) of x^n*y^k in the function A(x,y) that satisfies: y = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x,y)^n, as a triangle read by rows with k = 0..n for each row index n >= 0.
7
1, 0, 1, 0, 0, 2, 0, 1, 0, 5, 0, 0, 3, 0, 14, 0, -2, 0, 10, 0, 42, 0, 8, -12, 0, 35, 0, 132, 0, -14, 36, -52, 0, 126, 0, 429, 0, 16, -76, 148, -210, 0, 462, 0, 1430, 0, -7, 84, -354, 590, -825, 0, 1716, 0, 4862, 0, -24, -27, 416, -1565, 2322, -3199, 0, 6435, 0, 16796, 0, 103, -276, -120, 1950, -6732, 9086, -12320, 0, 24310, 0, 58786, 0, -232, 987, -1752, -560, 8832, -28490, 35464, -47268, 0, 92378, 0, 208012
OFFSET
0,6
COMMENTS
Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).
T(n,n) = binomial(2*n+1, n+1)/(2*n+1) = A000108(n) for n >= 0.
T(n+1,n) = 0 for n>= 0.
T(n+2,n) = binomial(2*n-1, n-1) = A001700(n-1) for n >= 1.
T(n+3,n) = 0 for n>= 0.
T(n+1,1) = A357401(n) for n >= 0.
A356783(n) = Sum_{k=0..n} T(n,k), for n >= 0.
A357402(n) = Sum_{k=0..n} T(n,k) * 2^k, for n >= 0.
A357403(n) = Sum_{k=0..n} T(n,k) * 3^k, for n >= 0.
A357404(n) = Sum_{k=0..n} T(n,k) * 4^k, for n >= 0.
A357405(n) = Sum_{k=0..n} T(n,k) * 5^k, for n >= 0.
LINKS
FORMULA
G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n*y^k satisfies the following relations.
(1) y = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x,y)^n.
(2) y*x*A(x,y) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x,y)^n ).
(3) -y*x*A(x,y)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x,y)^n / (1 - x^(n+1)*A(x,y))^n.
(4) -y*A(x,y)^3 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x,y) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x,y))^(n+1) / A(x,y)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x,y)^n / (A(x,y) - x^(n+1))^n.
EXAMPLE
G.f. A(x,y) = 1 + x*y + x^2*(2*y^2) + x^3*(y + 5*y^3) + x^4*(3*y^2 + 14*y^4) + x^5*(-2*y + 10*y^3 + 42*y^5) + x^6*(8*y - 12*y^2 + 35*y^4 + 132*y^6) + x^7*(-14*y + 36*y^2 - 52*y^3 + 126*y^5 + 429*y^7) + x^8*(16*y - 76*y^2 + 148*y^3 - 210*y^4 + 462*y^6 + 1430*y^8) + x^9*(-7*y + 84*y^2 - 354*y^3 + 590*y^4 - 825*y^5 + 1716*y^7 + 4862*y^9) + x^10*(-24*y - 27*y^2 + 416*y^3 - 1565*y^4 + 2322*y^5 - 3199*y^6 + 6435*y^8 + 16796*y^10) + ...
such that
y = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x,y)^2 + x^(-1)/A(x,y) + x*0 + x^3*(1 - x)^2*A(x,y) + x^5*(1 - x^2)^3*A(x,y)^2 + x^7*(1 - x^3)^4*A(x,y)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x,y)^n + ...
also
-y*A(x,y)^3 = ... + x^(-3)*(A(x,y) - x^(-2))^(-1)*A(x,y)^2 + x^(-1)*A(x,y) + x*(A(x,y) - 1) + x^3*(A(x,y) - x)^2/A(x,y) + x^5*(1 - x^2)^3/A(x,y)^2 + x^7*(A(x,y) - x^3)^4/A(x,y)^3 + ... + x^(2*n+1)*(A(x,y) - x^n)^(n+1)/A(x,y)^n + ...
This triangle of coefficients T(n,k) of x^n*y^k, k = 0..n, in g.f. A(x,y) begins:
n = 0: [1],
n = 1: [0, 1],
n = 2: [0, 0, 2],
n = 3: [0, 1, 0, 5],
n = 4: [0, 0, 3, 0, 14],
n = 5: [0, -2, 0, 10, 0, 42],
n = 6: [0, 8, -12, 0, 35, 0, 132],
n = 7: [0, -14, 36, -52, 0, 126, 0, 429],
n = 8: [0, 16, -76, 148, -210, 0, 462, 0, 1430],
n = 9: [0, -7, 84, -354, 590, -825, 0, 1716, 0, 4862],
n = 10: [0, -24, -27, 416, -1565, 2322, -3199, 0, 6435, 0, 16796],
n = 11: [0, 103, -276, -120, 1950, -6732, 9086, -12320, 0, 24310, 0, 58786],
n = 12: [0, -232, 987, -1752, -560, 8832, -28490, 35464, -47268, 0, 92378, 0, 208012],
n = 13: [0, 334, -2160, 6436, -9460, -2673, 39102, -119296, 138294, -180960, 0, 352716, 0, 742900],
n = 14: [0, -256, 3002, -14484, 36218, -46902, -12929, 170368, -495846, 539240, -691900, 0, 1352078, 0, 2674440], ...
in which the main diagonal equals the Catalan numbers (A000108).
PROG
(PARI) {T(n, k) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(y - sum(m=-#A\2-1, #A\2+1, x^(2*m+1) * (1 - x^m +x*O(x^#A))^(m+1) * Ser(A)^m ), #A-2); ); polcoeff(A[n+1], k, y)}
for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A356783 (row sums), A357402 (y=2), A357403 (y=3), A357404 (y=4), A357405 (y=5).
Cf. A357401 (column 1), A357151, A000108, A001700.
Sequence in context: A362839 A362837 A276193 * A238618 A132277 A137286
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Sep 26 2022
STATUS
approved