login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362839
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} k^(n-j) * Stirling2(n-j,j)/(n-j)!.
0
1, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 3, 0, 1, 0, 6, 12, 16, 0, 1, 0, 8, 27, 80, 65, 0, 1, 0, 10, 48, 216, 560, 336, 0, 1, 0, 12, 75, 448, 2025, 4512, 1897, 0, 1, 0, 14, 108, 800, 5120, 21708, 40768, 11824, 0, 1, 0, 16, 147, 1296, 10625, 67584, 260253, 407808, 80145, 0
OFFSET
0,9
FORMULA
E.g.f. of column k: exp(x * (exp(k * x) - 1)).
G.f. of column k: Sum_{j>=0} x^j / (1 - (k*j-1)*x)^(j+1).
T(n,k) = Sum_{j=0..n} (k*j-1)^(n-j) * binomial(n,j).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
0, 2, 4, 6, 8, 10, ...
0, 3, 12, 27, 48, 75, ...
0, 16, 80, 216, 448, 800, ...
0, 65, 560, 2025, 5120, 10625, ...
PROG
(PARI) T(n, k) = n!*sum(j=0, n\2, k^(n-j)*stirling(n-j, j, 2)/(n-j)!);
CROSSREFS
Columns k=0..3 give: A000007, A052506, A351736, A351737.
Main diagonal gives A356806.
Cf. A362652.
Sequence in context: A217377 A361652 A362834 * A362837 A276193 A357400
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 05 2023
STATUS
approved