OFFSET
1,4
COMMENTS
Let f(n)=6n+1. Let f(n,m) be f applied to n m-times. For example f(n,3) = f(f(f(n))). Then a(n) is the smallest m>=0 such that f(n,m) is prime.
a(525)=27871 is the largest found value in this sequence, which generates a probable prime with 21691 digits.
a(1247) and a(1898) are currently unknown. If they are positive then a(1247)>86500 and a(1898)>58000.
LINKS
Dmitri Kamenetsky, Table of n, a(n) for n = 1..1246
EXAMPLE
a(8)=4, because 4 is the smallest value for m such that ((5*8+1)*6^m-1)/5 is prime. The prime value is (41*6^4-1)/5 = 6*(6*(6*(6*8+1)+1)+1)+1 = 10627.
CROSSREFS
KEYWORD
nonn
AUTHOR
Dmitri Kamenetsky, Oct 01 2012
STATUS
approved