login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A040081
Riesel problem: a(n) = smallest m >= 0 such that n*2^m-1 is prime, or -1 if no such prime exists.
25
2, 1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 3, 0, 1, 1, 2, 0, 1, 0, 1, 1, 4, 0, 3, 2, 1, 3, 4, 0, 1, 0, 2, 1, 2, 1, 1, 0, 3, 1, 2, 0, 7, 0, 1, 3, 4, 0, 1, 2, 1, 1, 2, 0, 1, 2, 1, 3, 12, 0, 3, 0, 2, 1, 4, 1, 5, 0, 1, 1, 2, 0, 7, 0, 1, 1, 2, 2, 1, 0, 3, 1, 2, 0, 5, 6, 1, 23, 4, 0, 1, 2, 3, 3, 2, 1, 1, 0, 1, 1, 10, 0, 3
OFFSET
1,1
LINKS
Eric Chen, Table of n, a(n) for n = 1..2292 (first 1000 terms from T. D. Noe)
Matteo Cati and Dmitrii V. Pasechnik, A database of constructions of Hadamard matrices, arXiv:2411.18897 [math.CO], 2024. See p. 14.
Hans Riesel, Some large prime numbers. Translated from the Swedish original (Några stora primtal, Elementa 39 (1956), pp. 258-260) by Lars Blomberg.
MATHEMATICA
Table[m = 0; While[! PrimeQ[n*2^m - 1], m++]; m, {n, 100}] (* Arkadiusz Wesolowski, Sep 04 2011 *)
PROG
(Haskell)
a040081 = length . takeWhile ((== 0) . a010051) .
iterate ((+ 1) . (* 2)) . (subtract 1)
-- Reinhard Zumkeller, Mar 05 2012
(PARI) a(n)=for(k=0, 2^16, if(ispseudoprime(n*2^k-1), return(k))) \\ Eric Chen, Jun 01 2015
(Python)
from sympy import isprime
def a(n):
m = 0
while not isprime(n*2**m - 1): m += 1
return m
print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Feb 01 2021
CROSSREFS
Main sequences for Riesel problem: A038699, A040081, A046069, A050412, A052333, A076337, A101036, A108129.
Sequence in context: A363806 A335021 A176202 * A066745 A239393 A256637
KEYWORD
nonn
STATUS
approved