login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046069 Smallest m >= 0 such that (2n-1)2^m-1 is prime, or -1 if no such value exists. 10
2, 0, 2, 1, 1, 2, 3, 1, 2, 1, 1, 4, 3, 1, 4, 1, 2, 2, 1, 3, 2, 7, 1, 4, 1, 1, 2, 1, 1, 12, 3, 2, 4, 5, 1, 2, 7, 1, 2, 1, 3, 2, 5, 1, 4, 1, 3, 2, 1, 1, 10, 3, 2, 10, 9, 2, 8, 1, 1, 12, 1, 2, 2, 25, 1, 2, 3, 1, 2, 1, 1, 2, 5, 1, 4, 5, 3, 2, 1, 1, 2, 3, 2, 4, 1, 2, 2, 1, 1, 8, 3, 4, 2, 1, 3, 226, 3, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

There exist odd integers 2k-1 such that (2k-1)2^n-1 is always composite.

REFERENCES

Ribenboim, P., The New Book of Prime Number Records. New York: Springer-Verlag, pp. 357-359, 1996.

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

Eric Weisstein's World of Mathematics, Riesel Number.

MATHEMATICA

max = 10^6; (* this maximum value of m is sufficient up to n=1000 *) a[1] = 2; a[2] = 0; a[n_] := For[m = 1, m <= max, m++, If[PrimeQ[(2*n - 1)*2^m - 1], Return[m]]] /. Null -> -1; Reap[ Do[ Print[ "a(", n, ") = ", a[n]]; Sow[a[n]], {n, 1, 100}]][[2, 1]] (* Jean-Fran├žois Alcover, Nov 15 2013 *)

CROSSREFS

Cf. A046067, A046070.

Bisection of A040081.

Sequence in context: A029399 A302172 A249338 * A320042 A055651 A175929

Adjacent sequences:  A046066 A046067 A046068 * A046070 A046071 A046072

KEYWORD

nonn

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 19:41 EST 2019. Contains 329078 sequences. (Running on oeis4.)