

A046068


Second smallest m such that (2n1)2^m+1 is prime, or 1 if no such value exists.


4



1, 2, 3, 4, 2, 3, 8, 2, 15, 10, 4, 9, 4, 4, 3, 60, 6, 3, 4, 2, 11, 6, 9, 1483, 6, 3, 5, 8, 3, 11, 12, 4, 3, 6, 2, 5, 6, 3, 7, 10, 4, 5, 6, 6, 7, 168, 4, 3, 4, 2, 9, 18, 2, 7, 14, 4, 5, 12, 4, 3, 12, 8, 5, 12, 5, 3, 6, 2, 27, 14, 3, 77, 16, 11, 7, 20, 2, 7, 12, 7, 5, 4, 2, 103, 14, 9, 13, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

There exist odd integers 2k1 such that (2k1)2^n+1 is always composite.


REFERENCES

Ribenboim, P. The New Book of Prime Number Records. New York: SpringerVerlag, pp. 357359, 1996.


LINKS

Table of n, a(n) for n=1..88.
Eric Weisstein's World of Mathematics, Riesel Number.
Eric Weisstein's World of Mathematics, Sierpiński Number of the Second Kind


MATHEMATICA

max = 10000 (* this maximum value of m is sufficient up to n=191 *); a[n_] := Reap[ For[m = 1; cnt = 0, m <= max && cnt < 2, m++, If[m == max, Sow[1], If[PrimeQ[(2*n  1)*2^m + 1], cnt++; Sow[m]]]]][[2, 1]]; a[1] = {0, 1}; Table[a[n][[2]], {n, 1, 88}] (* JeanFrançois Alcover, Feb 27 2013 *)


CROSSREFS

Cf. A046067, A046070.
Sequence in context: A304112 A293446 A256443 * A166281 A330954 A107468
Adjacent sequences: A046065 A046066 A046067 * A046069 A046070 A046071


KEYWORD

sign


AUTHOR

Eric W. Weisstein


STATUS

approved



