login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046067 Smallest m such that (2n-1)2^m+1 is prime, or -1 if no such value exists. 15
0, 1, 1, 2, 1, 1, 2, 1, 3, 6, 1, 1, 2, 2, 1, 8, 1, 1, 2, 1, 1, 2, 2, 583, 2, 1, 1, 4, 2, 5, 4, 1, 1, 2, 1, 3, 2, 1, 3, 2, 1, 1, 4, 2, 1, 8, 2, 1, 2, 1, 3, 16, 1, 3, 6, 1, 1, 2, 3, 1, 8, 6, 1, 2, 3, 1, 4, 1, 3, 2, 1, 53, 6, 8, 3, 4, 1, 1, 8, 6, 3, 2, 1, 7, 2, 8, 1, 2, 2, 1, 4, 1, 3, 6, 1, 1, 2, 4, 15, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

There exist odd integers 2k-1 such that (2k-1)2^n+1 is always composite.

The smallest known example is 78557. Therefore a(39279) = -1.

For the corresponding primes see A057025(n-1), n >= 1, where a 0 will show up if a(n) = -1. - Wolfdieter Lang, Feb 07 2013.

Jaeschke shows that every positive integer appears infinitely often. - Jeppe Stig Nielsen, Jul 06 2020

REFERENCES

Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 357-359, 1996.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..5000 (with help from the Sierpiński problem website; typo in a(3707)=1 corrected by Jeppe Stig Nielsen)

Ray Ballinger and Wilfrid Keller, Sierpiński Problem

John R. Cowles and Ruben Gamboa, Verifying Sierpiński and Riesel Numbers in ACL2, arXiv preprint arXiv:1110.4671 [cs.DM], 2011.

G. Jaeschke, On the Smallest k Such that All k*2^N + 1 are Composite, Mathematics of Computation, Vol. 40, No. 161 (Jan., 1983), pp. 381-384.

Seventeen or Bust, A Distributed Attack on the Sierpiński Problem

W. Sierpiński, Sur un problème concernant les nombres k*2^n+1, Elem. d. Math. 15, pp. 73-74, 1960.

Eric Weisstein's World of Mathematics, Riesel Number.

Eric Weisstein's World of Mathematics, Sierpiński Number of the Second Kind.

MATHEMATICA

max = 10000 (* this maximum value of m is sufficient up to n = 1000 *); a[n_] := For[m = 1, m <= max, m++, If[PrimeQ[(2n - 1)*2^m + 1], Return[m]]] /. Null -> -1; a[1] = 0; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 08 2012 *)

CROSSREFS

Cf. A046068.

Bisection of A040076. Cf. A033809.

Cf. A057192, A057025.

Sequence in context: A309035 A071628 A033809 * A342416 A305531 A132066

Adjacent sequences:  A046064 A046065 A046066 * A046068 A046069 A046070

KEYWORD

sign

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 10:07 EDT 2021. Contains 345162 sequences. (Running on oeis4.)