OFFSET
1,1
COMMENTS
a(9) = (3^541-1)/2. - Conjectured by Jack Brennen, Oct 01 2012; confirmed by Max Alekseyev, Nov 10 2019
Since one of n, 2n-1, 2n+1 is divisible by 3 and thus is a power of 3, every term has one of the forms: 3^k, (3^k-1)/2, or (3^k+1)/2. - Max Alekseyev, Nov 10 2019
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..9
W. Smith and others, n, 2n-1, 2n+1 all prime or prime-power (maybe n-2 also), on primenumbers Yahoo! group, Oct 01 2012.
Warren Smith, Jack Brennen, Phil Carmody, n, 2n-1, 2n+1 all prime or prime-power (maybe n-2 also), digest of 6 messages in primenumbers Yahoo group, Oct 1, 2012.
MATHEMATICA
Select[Range[200], Length[FactorInteger[#]]==Length[FactorInteger[2#-1]] == Length[FactorInteger[2#+1]]==1&] (* Harvey P. Dale, Oct 12 2012 *)
PROG
(PARI) for(n=1, 9e9, omega(n)==1 & omega(2*n-1)==1 & omega(2*n+1)==1 & print1(n", ")) \\ - M. F. Hasler, Oct 01 2012
(Magma) [k:k in [2..1000]| forall{s:s in [k, 2*k-1, 2*k+1]| #PrimeDivisors(s) eq 1}]; // Marius A. Burtea, Nov 13 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, after an idea from Warren Smith, Oct 01 2012
STATUS
approved