login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357402
Coefficients in the power series A(x) such that: 2 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
7
1, 2, 8, 42, 236, 1420, 8976, 58644, 393200, 2689522, 18694164, 131658910, 937490780, 6737990172, 48816739048, 356142597586, 2614103310384, 19291118713324, 143044431901580, 1065237986700788, 7963426677825000, 59741019702076168, 449601401992383464, 3393484429948103486
OFFSET
0,2
COMMENTS
Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).
a(n) = Sum_{k=0..n} A357400(n,k) * 2^k, for n >= 0.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) 2 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) 2*x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -2*x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -2*A(x)^3 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 8*x^2 + 42*x^3 + 236*x^4 + 1420*x^5 + 8976*x^6 + 58644*x^7 + 393200*x^8 + 2689522*x^9 + 18694164*x^10 + ...
such that
2 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-2*A(x)^3 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(2 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 26 2022
STATUS
approved