login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = coefficient of x^n, n >= 0, in A(x) such that: 0 = Sum_{n>=1} ((1+x)^n - A(x))^n / (1+x)^(n^2).
2

%I #13 Dec 03 2022 12:05:10

%S 1,1,1,5,37,367,4463,63797,1043961,19208815,392278493,8802891869,

%T 215335062049,5704017709585,162695460126735,4972552233126827,

%U 162156046298476305,5620675413587870585,206382551428754263839,8003189847508668434429

%N a(n) = coefficient of x^n, n >= 0, in A(x) such that: 0 = Sum_{n>=1} ((1+x)^n - A(x))^n / (1+x)^(n^2).

%C All terms appear to be odd.

%H Paul D. Hanna, <a href="/A357397/b357397.txt">Table of n, a(n) for n = 0..300</a>

%e G.f.: A(X) = 1 + x + x^2 + 5*x^3 + 37*x^4 + 367*x^5 + 4463*x^6 + 63797*x^7 + 1043961*x^8 + 19208815*x^9 + 392278493*x^10 + ...

%e where

%e 0 = ((1+x) - A(x))/(1+x) + ((1+x)^2 - A(x))^2/(1+x)^4 + ((1+x)^3 - A(x))^3/(1+x)^9 + ((1+x)^4 - A(x))^4/(1+x)^16 + ((1+x)^5 - A(x))^5/(1+x)^25 + ... + ((1+x)^n - A(x))^n/(1+x)^(n^2) + ...

%e equivalently,

%e 0 = (1 - A(x)/(1+x)) + (1 - A(x)/(1+x)^2)^2 + (1 - A(x)/(1+x)^3)^3 + (1 - A(x)/(1+x)^4)^4 + (1 - A(x)/(1+x)^5)^5 + ... + (1 - A(x)/(1+x)^n)^n + ...

%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);

%o A[#A] = polcoeff( sum(m=1,#A-1, ((1+x)^m - Ser(A))^m/(1+x +x*O(x^#A) )^(m^2) ),#A-1) ); A[n+1]}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A357398.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Oct 20 2022