login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357395
E.g.f. satisfies A(x) = exp(x * exp(3 * A(x))) - 1.
1
0, 1, 7, 109, 2677, 90226, 3873007, 202134997, 12427851625, 879806921041, 70486590597331, 6304879010400202, 622838214328334077, 67347956304168803173, 7911963620634266270071, 1003477119181096373029261, 136658009168055564212000209, 19889317400287888238121299854
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (3 * n)^(k-1) * Stirling2(n,k).
a(n) ~ n^(n-1) / (3 * sqrt(1 + LambertW(1/3)) * LambertW(1/3)^n * exp(n*(4 - 1/LambertW(1/3)))). - Vaclav Kotesovec, Nov 14 2022
E.g.f.: Series_Reversion( exp(-3*x) * log(1 + x) ). - Seiichi Manyama, Sep 10 2024
MATHEMATICA
Table[Sum[(3*n)^(k-1) * StirlingS2[n, k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2022 *)
PROG
(PARI) a(n) = sum(k=1, n, (3*n)^(k-1)*stirling(n, k, 2));
CROSSREFS
Cf. A357336.
Sequence in context: A274787 A116875 A374882 * A371317 A303109 A101924
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 26 2022
STATUS
approved