login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357336
E.g.f. satisfies A(x) = (exp(x) - 1) * exp(3 * A(x)).
3
0, 1, 7, 100, 2257, 70021, 2768740, 133164109, 7546722487, 492531820066, 36381833190223, 3000677194970137, 273342303933512362, 27256107730344331879, 2952882035628632383975, 345384835617231362018764, 43378466647737203462409829, 5822506028894124326533926193
OFFSET
0,3
FORMULA
E.g.f.: -LambertW(3 * (1 - exp(x)))/3.
a(n) = Sum_{k=1..n} (3 * k)^(k-1) * Stirling2(n,k).
a(n) ~ sqrt(1 + 3*exp(1)) * n^(n-1) / (3 * exp(n) * log(1 + exp(-1)/3)^(n - 1/2)). - Vaclav Kotesovec, Nov 14 2022
E.g.f.: Series_Reversion( log(1 + x * exp(-3*x)) ). - Seiichi Manyama, Sep 09 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(3*(1-exp(x)))/3)))
(PARI) a(n) = sum(k=1, n, (3*k)^(k-1)*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 24 2022
STATUS
approved