login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001594
a(n) = 6^n + n^6.
8
1, 7, 100, 945, 5392, 23401, 93312, 397585, 1941760, 10609137, 61466176, 364568617, 2179768320, 13065520825, 78371693632, 470196375201, 2821126684672, 16926683582305, 101559990680640, 609359787056377
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-63,161,-245,231,-133,43,-6).
FORMULA
G.f.: (1 - 6*x + 72*x^2 - 75*x^3 - 1475*x^4 - 1776*x^5 - 334*x^6 - 7*x^7)/((1-x)^7*(1-6*x)). - Vincenzo Librandi, Aug 28 2014
MAPLE
seq(seq(k^n+n^k, k=6..6), n=0..19); # Zerinvary Lajos, Jun 29 2007
MATHEMATICA
Table[6^n + n^6, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 6 x + 72 x^2 - 75 x^3 - 1475 x^4 - 1776 x^5 - 334 x^6 - 7 x^7)/((1-x)^7 (1-6 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 28 2014 *)
LinearRecurrence[{13, -63, 161, -245, 231, -133, 43, -6}, {1, 7, 100, 945, 5392, 23401, 93312, 397585}, 20] (* Harvey P. Dale, Jan 07 2023 *)
PROG
(PARI) a(n)=6^n+n^6 \\ Charles R Greathouse IV, Feb 14 2011
(Magma) [6^n+n^6: n in [0..30]]; // Vincenzo Librandi, Oct 27 2011
(Sage) [6^n+n^6 for n in (0..30)] # Bruno Berselli, Aug 28 2014
CROSSREFS
Cf. sequences of the form k^n+n^k: A001580 (k=2), A001585 (k=3), A001589 (k=4), A001593 (k=5), this sequence (k=6), A001596 (k=7), A198401 (k=8), A185277 (k=9), A177068 (k=10), A177069 (k=11).
Sequence in context: A340887 A272957 A123616 * A297151 A052752 A357336
KEYWORD
nonn,easy
STATUS
approved