login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185277
a(n) = n^9 + 9^n.
5
1, 10, 593, 20412, 268705, 2012174, 10609137, 45136576, 177264449, 774840978, 4486784401, 33739007300, 287589316833, 2552470327702, 22897453501745, 205929575454024, 1853088908328577, 16677300287543066, 150094833656289489
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (19,-135,525,-1290,2142,-2478,2010,-1125,415,-91,9).
FORMULA
G.f.: (1 - 9*x + 538*x^2 + 9970*x^3 - 43028*x^4 - 638168*x^5-1317266*x^6 - 779618*x^7 - 130925*x^8 - 4527*x^9 - 8*x^10)/((1-x)^10*(1-9*x)). - Vincenzo Librandi, Aug 28 2014
MATHEMATICA
Table[9^n + n^9, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 9 x + 538 x^2 + 9970 x^3 - 43028 x^4 - 638168 x^5 - 1317266 x^6 - 779618 x^7 - 130925 x^8 - 4527 x^9 - 8 x^10)/((1 - x)^10 (1 - 9 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 28 2014 *)
LinearRecurrence[{19, -135, 525, -1290, 2142, -2478, 2010, -1125, 415, -91, 9}, {1, 10, 593, 20412, 268705, 2012174, 10609137, 45136576, 177264449, 774840978, 4486784401}, 20] (* Harvey P. Dale, Jun 08 2023 *)
PROG
(Magma) [9^n+n^9: n in [0..30]]; // Vincenzo Librandi, Oct 27 2011
(Sage) [9^n+n^9 for n in (0..30)] # Bruno Berselli, Aug 28 2014
(PARI) for(n=0, 25, print1(n^9 + 9^n, ", ")) \\ G. C. Greubel, Jun 25 2017
CROSSREFS
Cf. sequences of the form k^n+n^k: A001580 (k=2), A001585 (k=3), A001589 (k=4), A001593 (k=5), A001594 (k=6), A001596 (k=7), A198401 (k=8), this sequence (k=9), A177068 (k=10), A177069 (k=11).
Sequence in context: A337342 A323532 A273032 * A364515 A006441 A042751
KEYWORD
nonn,easy
AUTHOR
STATUS
approved