login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273032
E.g.f.: (sin(2*x) + sin(5*x)) / sin(7*x).
2
1, 10, 590, 87730, 24386030, 10896056050, 7140660673070, 6452172716731570, 7688003030273049710, 11679689713099591922290, 22034907735675944799243950, 50541665200040978421599836210, 138511221399376147951707017623790, 446986750662532432703671725548281330, 1677694112006573410256120810193681597230, 7246501185695514998554969680297128881865650
OFFSET
0,2
FORMULA
E.g.f.: cos(3*x/2) / cos(7*x/2).
E.g.f.: (cos(2*x) + cos(5*x)) / (1 + cos(7*x)).
E.g.f.: (exp(2*i*x) + exp(5*i*x)) / (1 + exp(7*i*x)), where i^2 = -1.
E.g.f.: exp(2*i*x)/(1 + exp(7*i*x)) + exp(-2*i*x)/(1 + exp(-7*i*x)), where i^2 = -1.
O.g.f.: 1/(1 - 2*5*x/(1 - 7^2*x/(1 - 9*12*x/(1 - 14^2*x/(1 - ... - (7*n+2)*(7*n+5)*x/(1 - (7*n+7)^2*x/(1 - ...))))))), a continued fraction.
a(n) ~ (2*n)! * 4*cos(3*Pi/14) * 7^(2*n) / Pi^(2*n+1). - Vaclav Kotesovec, May 14 2016
EXAMPLE
E.g.f.: A(x) = 1 + 10*x^2/2! + 590*x^4/4! + 87730*x^6/6! + 24386030*x^8/8! + 10896056050*x^10/10! + 7140660673070*x^12/12! +...
such that A(x) = (sin(2*x) + sin(5*x)) / sin(7*x).
O.g.f.: F(x) = 1 + 10*x + 590*x^2 + 87730*x^3 + 24386030*x^4 + 10896056050*x^5 + 7140660673070*x^6 + 6452172716731570*x^7 +...
such that the o.g.f. can be expressed as the continued fraction:
F(x) = 1/(1 - 2*5*x/(1 - 7^2*x/(1 - 9*12*x/(1 - 14^2*x/(1 - 16*19*x/(1 - 21^2*x/(1 - 23*26*x/(1 - 28^2*x/(1 - 30*33*x/(1 - 35^2*x/(1 - 37*40*x/(1 - ...)))))))))))).
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[(Sin[2x]+Sin[5x])/Sin[7x], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Jul 20 2018 *)
PROG
(PARI) {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (sin(2*X) + sin(5*X))/sin(7*X), 2*n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (cos(2*X) + cos(5*X))/(1 + cos(7*X)), 2*n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (exp(2*I*X) + exp(5*I*X))/(1 + exp(7*I*X)), 2*n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 13 2016
STATUS
approved