login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273030
G.f. A(x) satisfies: A(x)^3 = x * A( (A(x) + A(x)^2)^2 ).
0
1, 2, 7, 34, 189, 1132, 7134, 46642, 313468, 2152318, 15032964, 106474940, 762949599, 5520867592, 40287276592, 296133267074, 2190621494149, 16296005417256, 121830586282884, 914879338223438, 6897776776248601, 52194621068657552, 396250628678762793, 3017289164647604068, 23038674915285329005, 176358202113609998074, 1353151958449050620098, 10404826279377895563688, 80166547565004475870252, 618815710970799456428120
OFFSET
1,2
FORMULA
G.f. A(x) satisfies: A( x^3 / A(x^2 + 2*x^3 + x^4) ) = x.
EXAMPLE
G..f.: A(x) = x + 2*x^2 + 7*x^3 + 34*x^4 + 189*x^5 + 1132*x^6 + 7134*x^7 + 46642*x^8 + 313468*x^9 + 2152318*x^10 + 15032964*x^11 + 106474940*x^12 +...
such that A(x)^3 = x * A( (A(x) + A(x)^2)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 18*x^4 + 96*x^5 + 563*x^6 + 3496*x^7 + 22598*x^8 + 150520*x^9 + 1026077*x^10 + 7124504*x^11 + 50213484*x^12 + 358312064*x^13 +...
A(x)^3 = x^3 + 6*x^4 + 33*x^5 + 194*x^6 + 1206*x^7 + 7794*x^8 + 51859*x^9 + 353028*x^10 + 2447694*x^11 + 17227300*x^12 + 122769939*x^13 + 884167752*x^14 +...
A( (A(x) + A(x)^2)^2 ) = x^2 + 6*x^3 + 33*x^4 + 194*x^5 + 1206*x^6 + 7794*x^7 + 51859*x^8 + 353028*x^9 + 2447694*x^10 + 17227300*x^11 + 122769939*x^12 +...
(A(x) + A(x)^2)^2 = x^2 + 6*x^3 + 31*x^4 + 170*x^5 + 1003*x^6 + 6244*x^7 + 40404*x^8 + 269190*x^9 + 1834781*x^10 + 12735668*x^11 + 89726127*x^12 +...
The square-root of x*A(x) is an integer series:
sqrt( x*A(x) ) = x + x^2 + 3*x^3 + 14*x^4 + 76*x^5 + 448*x^6 + 2793*x^7 + 18120*x^8 + 121075*x^9 + 827574*x^10 + 5759383*x^11 + 40671931*x^12 + 290718799*x^13 +...
A((x + x^2)^2) = x^2 + 2*x^3 + 3*x^4 + 8*x^5 + 19*x^6 + 50*x^7 + 141*x^8 + 412*x^9 + 1246*x^10 + 3836*x^11 + 12024*x^12 + 38168*x^13 + 122488*x^14 +...
sqrt( A((x + x^2)^2) ) = x + x^2 + x^3 + 3*x^4 + 6*x^5 + 16*x^6 + 44*x^7 + 128*x^8 + 385*x^9 + 1177*x^10 + 3674*x^11 + 11606*x^12 + 37107*x^13 + 119819*x^14 +...
Let B(x) be the series reversion of g.f. A(x), so that A(B(x)) = x, then
B(x) = x - 2*x^2 + x^3 - 4*x^4 + 2*x^5 - 12*x^6 - 10*x^7 - 64*x^8 - 147*x^9 - 498*x^10 - 1493*x^11 - 4732*x^12 - 15050*x^13 - 48436*x^14 - 157400*x^15 +...
where B(x) = x^3 / A((x + x^2)^2),
also, B(x^3/B(x)) = (x + x^2)^2.
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = serreverse( x^3/subst(A, x, (x + x^2)^2 +x^2*O(x^n))) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Cf. A272485.
Sequence in context: A023053 A377963 A058915 * A020054 A206240 A289720
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 15 2016
STATUS
approved