login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058915
Number of graphs with 3 distinct components.
2
2, 7, 34, 181, 1266, 14106, 293756, 12362198, 1032671168, 166176421788, 50672459139597, 29105501987344357, 31455795559882541775, 64032588337815572241795, 246000022800939308314311897, 1787823981552130153705588238463, 24639598061620749532556334695267215
OFFSET
6,1
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, page 48, (2.6.3).
FORMULA
G.f.: 1/6*(f(x)^3 - 3*f(x)*f(x^2) + 2*f(x^3)), where f(x) = g(x) - 1 and g(x) is g.f. for connected graphs. Cf. A001349.
MATHEMATICA
Needs["Combinatorica`"]; max=25; A000088=Table[NumberOfGraphs[n], {n, 0, max}]; f[x_]=1-Product[1/(1-x^k)^a[k], {k, 1, max}]; a[0]=a[1]=a[2]=1; coes=CoefficientList[Series[f[x], {x, 0, max}], x]; sol=First[Solve[Thread[Rest[coes+A000088]== 0]]]; cg=Table[a[n], {n, 1, max}]/.sol; Take[CoefficientList[CycleIndex[AlternatingGroup[3], s]-CycleIndex[SymmetricGroup[3], s]/.Table[s[j]->Table[Sum[cg[[i]] x^(k*i), {i, 1, max}], {k, 1, max}][[j]], {j, 1, 3}], x], {7, max}] (* Geoffrey Critzer, Oct 15 2012; after code by Jean-François Alcover in A001349 *)
CROSSREFS
Cf. A001349. Column 3 of A217955.
Sequence in context: A376055 A023053 A377963 * A273030 A020054 A206240
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jan 11 2001
EXTENSIONS
More terms from Sean A. Irvine, Sep 05 2022
STATUS
approved