OFFSET
0,3
COMMENTS
Also the number of partitions of n^2 into exactly n parts. - Seiichi Manyama, May 07 2018
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..382 (first 150 terms from Alois P. Heinz)
FORMULA
a(n) = [x^(n^2-n)] Product_{k=1..n} 1/(1 - x^k).
a(n) ~ c * d^n / n^2, where d = 9.153370192454122461948530292401354540073... = A258268, c = 0.07005383646855329845970382163053268... . - Vaclav Kotesovec, Sep 07 2014
EXAMPLE
From Seiichi Manyama, May 07 2018: (Start)
n | Partitions of n^2 into exactly n parts
--+-------------------------------------------------------
1 | 1.
2 | 3+1 = 2+2.
3 | 7+1+1 = 6+2+1 = 5+3+1 = 5+2+2 = 4+4+1 = 4+3+2 = 3+3+3. (End)
MAPLE
T:= proc(n, k) option remember;
`if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
end:
seq(T(n^2-n, n), n=0..20); # Vaclav Kotesovec, May 25 2015 after Alois P. Heinz
MATHEMATICA
Table[SeriesCoefficient[Product[1/(1-x^k), {k, 1, n}], {x, 0, n*(n-1)}], {n, 0, 20}] (* Vaclav Kotesovec, May 25 2015 *)
PROG
(PARI) {a(n)=polcoeff(prod(k=1, n, 1/(1-x^k+x*O(x^(n^2-n)))), n^2-n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 05 2012
STATUS
approved