OFFSET
0,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..500
A. Umar, Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations, J. Int. Seq. 14 (2011) # 11.7.5, corollary 42, tables 4.3 and 4.4
FORMULA
(n-1)*(69642*n - 248963)*a(n) + (-358060*n^2 + 1078397*n - 66480)*a(n-1) + 3*(56652*n^2 + 710433*n - 1732769)*a(n-2) + (749910*n^2 - 7663147*n + 14398378)*a(n-3) - 2*(157862*n - 346287)*(2*n - 7)*a(n-4) = 0.
MAPLE
seq(n*binomial(2*n, n)+1-n^2*(n^2-2*n+3)/2, n=0..20) ;
PROG
(GAP)
A289720:=List([0..10^3], n->1+n*Binomial(2*n, n)-(n^2*(n^2-2*n+3))/2); # Muniru A Asiru, Sep 03 2017
(PARI) a(n) = {1 + n*binomial(2*n, n) - n^2*(n^2 - 2*n + 3)/2} \\ Andrew Howroyd, Apr 26 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Sep 02 2017
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Apr 26 2020
STATUS
approved