login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289720
a(n) = 1 + n*binomial(2*n,n) - n^2*(n^2 - 2*n + 3)/2.
2
1, 2, 7, 34, 193, 1036, 5059, 23094, 101329, 434908, 1843411, 7753582, 32441017, 135195464, 561615643, 2326740526, 9617257185, 39671268460, 163352388259, 671559953358, 2756930503801, 11303415274600, 46290177094635, 189368906606254, 773942488241473, 3160265160763176
OFFSET
0,2
LINKS
A. Umar, Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations, J. Int. Seq. 14 (2011) # 11.7.5, corollary 42, tables 4.3 and 4.4
FORMULA
(n-1)*(69642*n - 248963)*a(n) + (-358060*n^2 + 1078397*n - 66480)*a(n-1) + 3*(56652*n^2 + 710433*n - 1732769)*a(n-2) + (749910*n^2 - 7663147*n + 14398378)*a(n-3) - 2*(157862*n - 346287)*(2*n - 7)*a(n-4) = 0.
MAPLE
seq(n*binomial(2*n, n)+1-n^2*(n^2-2*n+3)/2, n=0..20) ;
PROG
(GAP)
A289720:=List([0..10^3], n->1+n*Binomial(2*n, n)-(n^2*(n^2-2*n+3))/2); # Muniru A Asiru, Sep 03 2017
(PARI) a(n) = {1 + n*binomial(2*n, n) - n^2*(n^2 - 2*n + 3)/2} \\ Andrew Howroyd, Apr 26 2020
CROSSREFS
Cf. A289719.
Sequence in context: A273030 A020054 A206240 * A190631 A326560 A199475
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Sep 02 2017
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Apr 26 2020
STATUS
approved