Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Apr 27 2020 06:27:16
%S 1,2,7,34,193,1036,5059,23094,101329,434908,1843411,7753582,32441017,
%T 135195464,561615643,2326740526,9617257185,39671268460,163352388259,
%U 671559953358,2756930503801,11303415274600,46290177094635,189368906606254,773942488241473,3160265160763176
%N a(n) = 1 + n*binomial(2*n,n) - n^2*(n^2 - 2*n + 3)/2.
%H Andrew Howroyd, <a href="/A289720/b289720.txt">Table of n, a(n) for n = 0..500</a>
%H A. Umar, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Umar/umar2.html">Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations</a>, J. Int. Seq. 14 (2011) # 11.7.5, corollary 42, tables 4.3 and 4.4
%F (n-1)*(69642*n - 248963)*a(n) + (-358060*n^2 + 1078397*n - 66480)*a(n-1) + 3*(56652*n^2 + 710433*n - 1732769)*a(n-2) + (749910*n^2 - 7663147*n + 14398378)*a(n-3) - 2*(157862*n - 346287)*(2*n - 7)*a(n-4) = 0.
%p seq(n*binomial(2*n,n)+1-n^2*(n^2-2*n+3)/2,n=0..20) ;
%o (GAP)
%o A289720:=List([0..10^3], n->1+n*Binomial(2*n,n)-(n^2*(n^2-2*n+3))/2); # _Muniru A Asiru_, Sep 03 2017
%o (PARI) a(n) = {1 + n*binomial(2*n,n) - n^2*(n^2 - 2*n + 3)/2} \\ _Andrew Howroyd_, Apr 26 2020
%Y Cf. A289719.
%K nonn,easy
%O 0,2
%A _R. J. Mathar_, Sep 02 2017
%E Terms a(21) and beyond from _Andrew Howroyd_, Apr 26 2020