login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199475 G.f. satisfies: A(x) = Sum_{n>=0} x^n * (1 - A(x)^(2*n+2))/(1 - A(x)^2). 13
1, 2, 7, 34, 195, 1225, 8146, 56336, 401005, 2918308, 21614216, 162385693, 1234515922, 9479336440, 73410868630, 572719097908, 4496923141241, 35509806367132, 281814387290431, 2246608404455588, 17982234787607464, 144458551104066553, 1164342291135424494 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare to g.f. B(x) of A007317 (binomial transform of Catalan numbers):

B(x) = Sum_{n>=0} x^n * (1 - B(x)^(n+1))/(1 - B(x)).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..500

FORMULA

G.f. satisfies: A(x) = 1/((1-x)*(1 - x*A(x)^2)).

G.f.: A(x) = (1/x)*Series_Reversion( 2*x^2/(1+x^2 - sqrt(1-4*x-2*x^2+x^4)) ).

G.f. satisfies: A(x) = G(x*A(x)) and G(x) = A(x/G(x)) = g.f. of A171199, where G(x) = exp( Sum_{n>=1} [G(x)^n + G(x)^-n]*x^n/n ).

a(n) = 1 + Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1). - Ilya Gutkovskiy, Jul 25 2021

a(n) ~ sqrt(387 + 35*sqrt(129)) * (35 + 3*sqrt(129))^n / (9 * sqrt(Pi) * n^(3/2) * 2^(3*n + 5/2)). - Vaclav Kotesovec, Jul 30 2021

EXAMPLE

G.f.: A(x) = 1 + 2*x + 7*x^2 + 34*x^3 + 195*x^4 + 1225*x^5 +...

where g.f. A = A(x) satisfies the equivalent expressions:

A = 1 + x*(1-A^4)/(1-A^2) + x^2*(1-A^6)/(1-A^2) + x^3*(1-A^8)/(1-A^2) +...

A = 1 + x*(1 + A^2) + x^2*(1 + A^2 + A^4) + x^3*(1 + A^2 + A^4 + A^6) +...

MATHEMATICA

Rest[CoefficientList[InverseSeries[Series[(2*x^2)/(1 + x^2 - Sqrt[1 - 4*x - 2*x^2 + x^4]), {x, 0, 30}], x], x]] (* Vaclav Kotesovec, Jul 30 2021 *)

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*sum(k=0, m, A^(2*k))+x*O(x^n))); polcoeff(A, n)}

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/((1-x)*(1 - x*A^2+x*O(x^n)))); polcoeff(A, n)}

(PARI) {a(n)=polcoeff(1/x*serreverse(2*x^2/(1+x^2-sqrt(1-4*x-2*x^2+x^4+x^3*O(x^n)))), n)}

CROSSREFS

Cf. A007317, A171199, A199548, A349289, A349290, A349291, A349292, A349293.

Sequence in context: A289720 A190631 A326560 * A241599 A307696 A237645

Adjacent sequences:  A199472 A199473 A199474 * A199476 A199477 A199478

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 02:09 EDT 2022. Contains 353687 sequences. (Running on oeis4.)