The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A349290 G.f. A(x) satisfies: A(x) = 1 / ((1 - x) * (1 - x * A(x)^4)). 7
 1, 2, 11, 96, 1001, 11456, 139013, 1756596, 22867421, 304560171, 4130200726, 56836946342, 791689962811, 11140615233281, 158140107648676, 2261708608884896, 32559326010349817, 471428798399646336, 6860801662510005266, 100302910051255600486 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..500 FORMULA a(n) = Sum_{k=0..n} binomial(n+3*k,4*k) * binomial(5*k,k) / (4*k+1). a(n) = F([1/5, 2/5, 3/5, 4/5, (1+n)/3, (2+n)/3, (3+n)/3, -n], [1/4, 1/2, 1/2, 3/4, 3/4, 1, 5/4], -3^3*5^5/2^16), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 13 2021 a(n) ~ sqrt(1 + 3*r) / (2 * 5^(3/4) * sqrt(2*Pi*(1-r)) * n^(3/2) * r^(n + 1/4)), where r = 0.0631152861998150860738633360987635931... is the root of the equation 5^5 * r = 4^4 * (1-r)^4. - Vaclav Kotesovec, Nov 14 2021 MATHEMATICA nmax = 19; A[_] = 0; Do[A[x_] = 1/((1 - x) (1 - x A[x]^4)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Table[Sum[Binomial[n + 3 k, 4 k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 19}] PROG (PARI) a(n) = sum(k=0, n, binomial(n+3*k, 4*k) * binomial(5*k, k) / (4*k+1)); \\ Michel Marcus, Nov 14 2021 CROSSREFS Cf. A002294, A007317, A199475, A346647, A349289, A349291, A349292, A349293. Sequence in context: A131407 A197994 A186273 * A332239 A261886 A245895 Adjacent sequences:  A349287 A349288 A349289 * A349291 A349292 A349293 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Nov 13 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 09:09 EDT 2022. Contains 354112 sequences. (Running on oeis4.)