login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349290
G.f. A(x) satisfies: A(x) = 1 / ((1 - x) * (1 - x * A(x)^4)).
11
1, 2, 11, 96, 1001, 11456, 139013, 1756596, 22867421, 304560171, 4130200726, 56836946342, 791689962811, 11140615233281, 158140107648676, 2261708608884896, 32559326010349817, 471428798399646336, 6860801662510005266, 100302910051255600486
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(n+3*k,4*k) * binomial(5*k,k) / (4*k+1).
a(n) = F([1/5, 2/5, 3/5, 4/5, (1+n)/3, (2+n)/3, (3+n)/3, -n], [1/4, 1/2, 1/2, 3/4, 3/4, 1, 5/4], -3^3*5^5/2^16), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 13 2021
a(n) ~ sqrt(1 + 3*r) / (2 * 5^(3/4) * sqrt(2*Pi*(1-r)) * n^(3/2) * r^(n + 1/4)), where r = 0.0631152861998150860738633360987635931... is the root of the equation 5^5 * r = 4^4 * (1-r)^4. - Vaclav Kotesovec, Nov 14 2021
MATHEMATICA
nmax = 19; A[_] = 0; Do[A[x_] = 1/((1 - x) (1 - x A[x]^4)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 3 k, 4 k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 19}]
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+3*k, 4*k) * binomial(5*k, k) / (4*k+1)); \\ Michel Marcus, Nov 14 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 13 2021
STATUS
approved