login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261886
E.g.f. satisfies: A(x) = A( x/(1-x)^3 ) * (1-x)/(1+2*x) with A(0)=0.
2
0, 1, -2, 11, -96, 1080, -13776, 179592, -2257536, 36167616, -1328400000, 53474351040, -364978483200, -111366266618880, 2057176091013120, 861071536310630400, -50092279632602726400, -9303569614922165452800, 1142810852264472571084800, 154051064897857365779251200, -35956459453770594679062528000
OFFSET
0,3
COMMENTS
a(n) = A261885(n)/3.
LINKS
EXAMPLE
E.g.f.: A(x) = x - 2*x^2/2! + 11*x^3/3! - 96*x^4/4! + 1080*x^5/5! - 13776*x^6/6! + 179592*x^7/7! - 2257536*x^8/8! + 36167616*x^9/9! - 1328400000*x^10/10! +...
A(x/(1-x)^3) = x + 4*x^2/2! + 11*x^3/3! + 36*x^4/4! + 300*x^5/5! + 984*x^6/6! - 6384*x^7/7! + 564864*x^8/8! + 615744*x^9/9! - 598890240*x^10/10! +...
where A(x/(1-x)^3) = (1+2*x)/(1-x)*A(x).
PROG
(PARI) /* E.g.f. satisfies: A(x) = (1-x)/(1+2*x)*A(x/(1-x)^3): */
{a(n)=local(A=x, B); for(m=2, n, B=(1-x)/(1+2*x+O(x^(n+3)))*subst(A, x, x/(1-x+O(x^(n+3)))^3); A=A-polcoeff(B, m+1)*x^m/(m-1)/3); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A261885.
Sequence in context: A186273 A349290 A332239 * A245895 A231229 A138210
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 04 2015
STATUS
approved