login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261889
Primes that are the square of the sum of a twin prime pair plus 1.
1
577, 1297, 7057, 14401, 41617, 90001, 147457, 156817, 484417, 746497, 1299601, 1742401, 2702737, 2944657, 4260097, 5308417, 6051601, 6780817, 8785297, 10497601, 14107537, 15210001, 16451137, 17438977, 18147601, 29419777, 38937601, 45968401, 51322897, 56791297
OFFSET
1,1
COMMENTS
Alternatively: Primes of the form (p + q)^2 + 1 where p and q are twin primes.
All the terms are congruent to 1 (mod 3).
LINKS
EXAMPLE
577 appears in the sequence because it is a prime resulting from twin prime pair (11,13): (11 + 13)^2 + 1 = 577.
7057 appears in the sequence because it is a prime resulting from twin prime pair (41,43): (41 + 43)^2 + 1 = 7057.
MAPLE
A261889:= proc() local a, b, d; a:= ithprime(n); b:=a+2; d:=(a+b)^2+1; if isprime(b)and isprime(d) then return (d): fi; end: seq(A261889 (), n=1..10000);
MATHEMATICA
A261889 = {}; Do[p1 = Prime[n]; p2 = p1 + 2; p = (p1 + p2)^2 + 1; If[PrimeQ[p2] && PrimeQ[p], AppendTo[A261889, p]], {n, 1, 10000}]; A261889
PROG
(PARI) forprime(p = 1, 10000, if(isprime(p+2) && isprime((p + p + 2)^2 + 1), print1(( (p + p + 2)^2 + 1), ", ")));
(PARI) list(lim)=my(v=List(), t, p=2); forprime(q=3, sqrtint(lim\1-1)\2+1, if(q-p==2 && isprime(t=(p+q)^2+1), listput(v, t)); p=q); Vec(v) \\ Charles R Greathouse IV, Sep 06 2015
(Magma) [k : p in PrimesUpTo (10000) | IsPrime(p+2) and IsPrime(k) where k is ((p + p + 2)^2 + 1)];
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Sep 05 2015
STATUS
approved