login
A199476
Triangle read by rows: number of inequivalent classes of true tripartite entanglement systems of type 2 X M X N, for 2 <= N <= M.
2
2, 2, 6, 1, 5, 16, 1, 2, 12, 34, 1, 1, 6, 28, 77, 1, 1, 2, 14, 61, 157, 1, 1, 1, 6, 34, 133, 328, 1, 1, 1, 2, 15, 74, 277, 655, 1, 1, 1, 1, 6, 36, 165, 572, 1309, 1, 1, 1, 1, 2, 15, 80, 345, 1154, 2550, 1, 1, 1, 1, 1, 6, 37, 179, 722, 2299, 4958
OFFSET
2,1
LINKS
XiKun Li, JunLi Li, Bin Liu and CongFeng Qiao, The parametric symmetry and numbers of the entangled class of 2 × M × N system, SCIENCE CHINA PHYSICS, MECHANICS & ASTRONOMY, Volume 54, Number 8, 1471-1475
EXAMPLE
Triangle begins:
2
2 6
1 5 16
1 2 12 34
1 1 6 28 77
1 1 2 14 61 157
1 1 1 6 34 133 328
1 1 1 2 15 74 277 655
1 1 1 1 6 36 165 572 1309
...
This may also be regarded as a square array, allowing values on N >= M, in which case it begins like this:
2 2 1 1 1 1 1 1 1 ...
2 6 5 2 1 1 1 1 1 ...
1 5 16 12 6 2 1 1 1 ...
1 2 12 34 28 14 6 2 1 ...
1 1 6 28 77 61 34 15 6 ...
1 1 2 14 61 157 133 74 36 ...
1 1 1 6 34 133 328 277 165 ...
1 1 1 2 15 74 277 655 572 ...
1 1 1 1 6 36 165 572 1309 ...
...
MAPLE
f := proc(n, m)
1/mul(1-x^k, k=1..m) ;
coeftayl(%, x=0, n) ;
end proc:
F := proc(j, r, c)
option remember ;
if j < 0 then
return 0 ;
end if;
if j = 0 then
1 ;
elif c = 0 then
f(j, r) ;
elif r=0 then
f(j, c) ;
else
procname(j, r, 0)+procname(j, 0, c) + add(add(procname(j-m-n, m, n), n=1..c), m=1..r) ;
end if ;
end proc:
omega := proc(M, N, i, j)
option remember;
A001970(2*M-N-3*i-j)*F(j, i, i+N-M) ;
end proc:
A199476 := proc(M, N)
local a, i, j ;
if N< M then
return procname(N, M);
end if;
if N >= 2*M then
return 1 ;
end if;
a := 0 ;
for i from 0 to floor((2*M-N)/3) do
for j from 0 to 2*M-N-3*i do
a := a+ omega(M, N, i, j) ;
if M = N and i =0 and j =0 then
a := a-1 ;
end if;
end do:
end do:
a ;
end proc:
seq( seq(A199476(N, M), N=2..M), M=2..12) ; # R. J. Mathar, Feb 10 2024
CROSSREFS
Cf. A199477.
Sequence in context: A101207 A186435 A260297 * A209124 A155818 A010245
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Nov 06 2011
STATUS
approved