The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326560 G.f. A(x) satisfies: Sum_{n>=0} A(x)^(n^2+1) * x^n = Sum_{n>=0} (A(x)^n + 1)^n * x^n. 7
1, 1, 2, 7, 34, 194, 1224, 8293, 59339, 443701, 3442848, 27588356, 227529532, 1926646258, 16721243096, 148562052636, 1350062285166, 12541860393678, 119063283469925, 1154811490210063, 11442318733504290, 115814699610954732, 1197419573869725301, 12645763334344402812, 136404757181266881472, 1502619706308922359493, 16901618050427393955502 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) allows the following sums to be equal:
(1) B(x) = Sum_{n>=0} A(x)^(n^2+1) * x^n.
(2) B(x) = Sum_{n>=0} (A(x)^n + 1)^n * x^n.
(3) B(x) = Sum_{n>=0} A(x)^(n^2) * x^n / (1 - x*A(x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 34*x^4 + 194*x^5 + 1224*x^6 + 8293*x^7 + 59339*x^8 + 443701*x^9 + 3442848*x^10 + 27588356*x^11 + 227529532*x^12 + ...
such that the following sums are equal
B(x) = A(x) + A(x)^2*x + A(x)^5*x^2 + A(x)^10*x^3 + A(x)^17*x^4 + A(x)^26*x^5 + A(x)^37*x^6 + A(x)^50*x^7 + A(x)^65*x^8 + ... + A(x)^(n^2+1)*x^n + ...
and
B(x) = 1 + (1 + A(x))*x + (1 + A(x)^2)^2*x^2 + (1 + A(x)^3)^3*x^3 + (1 + A(x)^4)^4*x^4 + (1 + A(x)^5)^5*x^5 + ... + (1 + A(x)^n)^n*x^n + ...
also
B(x) = 1/(1 - x) + A(x)*x/(1 - x*A(x))^2 + A(x)^4*x^2/(1 - x*A(x)^2)^3 + A(x)^9*x^3/(1 - x*A(x)^3)^4 + ... + A(x)^(n^2)*x^n/(1 - x*A(x)^n)^(n+1) + ...
where
B(x) = 1 + 2*x + 5*x^2 + 18*x^3 + 83*x^4 + 448*x^5 + 2690*x^6 + 17453*x^7 + 120196*x^8 + 868508*x^9 + 6532883*x^10 + 50874263*x^11 + 408560700*x^12 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, (Ser(A)^(m) + 1)^m*x^m - Ser(A)^(m^2+1)*x^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A206240 A289720 A190631 * A199475 A241599 A356118
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 23 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 07:52 EDT 2024. Contains 373393 sequences. (Running on oeis4.)