login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326563
G.f. A(x) satisfies: Sum_{n>=0} A(x)^((n-1)^2) * x^n = Sum_{n>=0} (A(x)^(n-2) + 1)^n * x^n.
5
1, 1, 2, 5, 19, 87, 458, 2650, 16459, 108313, 748530, 5400001, 40494822, 314699916, 2528714512, 20972984213, 179305049748, 1578420640715, 14293912578588, 133053118062054, 1272096858349455, 12483241986776063, 125644852173512082, 1296202208475495630, 13696609133818915790, 148138542880240522733, 1638862202896363931279, 18532964342704899428439, 214086944190169455544290, 2524648814791758862995327
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) allows the following sums to be equal:
(1) B(x) = Sum_{n>=0} A(x)^((n-1)^2) * x^n.
(2) B(x) = Sum_{n>=0} (A(x)^(n-2) + 1)^n * x^n.
(3) B(x) = Sum_{n>=0} A(x)^(n*(n-2)) * x^n / (1 - x*A(x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 19*x^4 + 87*x^5 + 458*x^6 + 2650*x^7 + 16459*x^8 + 108313*x^9 + 748530*x^10 + 5400001*x^11 + 40494822*x^12 + ...
such that the following sums are equal
B(x) = A(x) + x + A(x)*x^2 + A(x)^4*x^3 + A(x)^9*x^4 + A(x)^16*x^5 + A(x)^25*x^6 + A(x)^36*x^7 + A(x)^49*x^8 + ... + A(x)^((n-1)^2)*x^n + ...
and
B(x) = 1 + (1 + 1/A(x))*x + 2^2*x^2 + (1 + A(x))^3*x^3 + (1 + A(x)^2)^4*x^4 + (1 + A(x)^3)^5*x^5 + (1 + A(x)^4)^6*x^6 + ... + (1 + A(x)^(n-2))^n*x^n + ...
also
B(x) = 1/(1 - x) + 1/A(x)*x/(1 - x*A(x))^2 + x^2/(1 - x*A(x)^2)^3 + A(x)^3*x^3/(1 - x*A(x)^3)^4 + ... + A(x)^(n*(n-2))*x^n/(1 - x*A(x)^n)^(n+1) + ...
where
B(x) = 1 + 2*x + 3*x^2 + 7*x^3 + 26*x^4 + 116*x^5 + 596*x^6 + 3373*x^7 + 20541*x^8 + 132803*x^9 + 903151*x^10 + 6420523*x^11 + 47502514*x^12 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, (Ser(A)^(m-2) + 1)^m*x^m - Ser(A)^((m-1)^2)*x^m ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 24 2019
STATUS
approved