login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324618
G.f. A(x) = Sum_{n>=0} x^n*(A(x)^n - 1)^n/(1 - x*A(x)^n)^(n+1).
4
1, 1, 2, 5, 19, 86, 436, 2378, 13731, 83077, 523275, 3416329, 23051600, 160440679, 1150435934, 8492238919, 64508971958, 504172573079, 4053925852485, 33535370139607, 285391912938870, 2498255748837089, 22489737035242848, 208124346717364948, 1978949027666465869, 19321957528006663637, 193581292284734286398, 1988536950750112238165
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} x^n*(A(x)^n - 1)^n / (1 - x*A(x)^n)^(n+1).
(2) A(x) = Sum_{n>=0} x^n*(A(x)^n + 1)^n / (1 + x*A(x)^n)^(n+1).
(3) A(x) = Sum_{n>=0} x^n*Sum_{k=0..n} binomial(n,k) * (A(x)^n - A(x)^k)^(n-k).
(4) A(x) = Sum_{n>=0} x^n*Sum_{k=0..n} (-1)^k * binomial(n,k) * (A(x)^n + A(x)^k)^(n-k).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 19*x^4 + 86*x^5 + 436*x^6 + 2378*x^7 + 13731*x^8 + 83077*x^9 + 523275*x^10 + 3416329*x^11 + 23051600*x^12 + ...
such that
A(x) = 1/(1 - x) + x*(A(x) - 1)/(1 - x*A(x))^2 + x^2*(A(x)^2 - 1)^2/(1 - x*A(x)^2)^3 + x^3*(A(x)^3 - 1)^3/(1 - x*A(x)^3)^4 + x^4*(A(x)^4 - 1)^4/(1 - x*A(x)^4)^5 + x^5*(A(x)^5 - 1)^5/(1 - x*A(x)^5)^6 + ...
also
A(x) = 1/(1 + x) + x*(A(x) + 1)/(1 + x*A(x))^2 + x^2*(A(x)^2 + 1)^2/(1 + x*A(x)^2)^3 + x^3*(A(x)^3 + 1)^3/(1 + x*A(x)^3)^4 + x^4*(A(x)^4 + 1)^4/(1 + x*A(x)^4)^5 + x^5*(A(x)^5 + 1)^5/(1 + x*A(x)^5)^6 + ...
MATHEMATICA
m = 35; A[_] = 0; Unprotect[Power]; 0^0 = 1; Protect[Power];
Do[A[x_] = Sum[ x^n (A[x]^n - 1)^n/(1 - x A[x]^n)^(n + 1), {n, 0, k}] + O[x]^k, {k, m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 21 2019 *)
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff( sum(n=0, #A+1, x^n*(Ser(A)^n - 1)^n/(1 - x*Ser(A)^n)^(n+1) ), #A-1));
polcoeff(Ser(A), n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1, 1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff( sum(n=0, #A+1, x^n*(Ser(A)^n + 1)^n/(1 + x*Ser(A)^n)^(n+1) ), #A-1));
polcoeff(Ser(A), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A324619.
Sequence in context: A286071 A002851 A354621 * A326563 A316700 A124348
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 11 2019
STATUS
approved