login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324617
G.f. A(x) satisfies: 1 + x = Sum_{n>=0} x^n*(A(x)^n + 1)^n/(1 + x*A(x)^n)^(n+1).
1
1, -1, 1, -6, 10, -27, 28, -107, 502, -1996, -1015, 39035, -76739, -1078632, 7222569, 9644362, -337421969, 1171731119, 9909483512, -109536156966, 74836320374, 5651749289781, -37674051339344, -117589711277053, 3186640549115616, -12979461559921647, -138543759546567508, 1942263572054253138, -3322718404632175707, -132968516893238601191, 1307791482651889603081, 1344751233503556511150
OFFSET
0,4
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 + x = Sum_{n>=0} x^n*(A(x)^n + 1)^n/(1 + x*A(x)^n)^(n+1).
(2) 1 + x = Sum_{n>=0} x^n*(A(x)^n - 1)^n/(1 - x*A(x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 - x + x^2 - 6*x^3 + 10*x^4 - 27*x^5 + 28*x^6 - 107*x^7 + 502*x^8 - 1996*x^9 - 1015*x^10 + 39035*x^11 - 76739*x^12 - 1078632*x^13 + ...
such that
1 + x = 1/(1 + x*A(x)) + x*(A(x) + 1)/(1 + x*A(x))^2 + x^2*(A(x)^2 + 1)^2 / (1 + x*A(x)^2)^3 + x^3*(A(x)^3 + 1)^3/(1 + x*A(x)^3)^4 + x^4*(A(x)^4 + 1)^4 / (1 + x*A(x)^4)^5 + x^5*(A(x)^5 + 1)^5 / (1 + x*A(x)^5)^6 + ...
also
1 + x = 1/(1 - x*A(x)) + x*(A(x) - 1)/(1 - x*A(x))^2 + x^2*(A(x)^2 - 1)^2 / (1 - x*A(x)^2)^3 + x^3*(A(x)^3 - 1)^3/(1 - x*A(x)^3)^4 + x^4*(A(x)^4 - 1)^4 / (1 - x*A(x)^4)^5 + x^5*(A(x)^5 - 1)^5 / (1 - x*A(x)^5)^6 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = -polcoeff( sum(n=0, #A+1, x^n*(Ser(A)^n + 1)^n/(1 + x*Ser(A)^n)^(n+1) ), #A)); polcoeff(Ser(A), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A077621 A298736 A336845 * A359145 A287989 A081394
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 12 2019
STATUS
approved