The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324617 G.f. A(x) satisfies: 1 + x = Sum_{n>=0} x^n*(A(x)^n + 1)^n/(1 + x*A(x)^n)^(n+1). 1
 1, -1, 1, -6, 10, -27, 28, -107, 502, -1996, -1015, 39035, -76739, -1078632, 7222569, 9644362, -337421969, 1171731119, 9909483512, -109536156966, 74836320374, 5651749289781, -37674051339344, -117589711277053, 3186640549115616, -12979461559921647, -138543759546567508, 1942263572054253138, -3322718404632175707, -132968516893238601191, 1307791482651889603081, 1344751233503556511150 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Paul D. Hanna, Table of n, a(n) for n = 0..200 FORMULA G.f. A(x) satisfies: (1) 1 + x = Sum_{n>=0} x^n*(A(x)^n + 1)^n/(1 + x*A(x)^n)^(n+1). (2) 1 + x = Sum_{n>=0} x^n*(A(x)^n - 1)^n/(1 - x*A(x)^n)^(n+1). EXAMPLE G.f.: A(x) = 1 - x + x^2 - 6*x^3 + 10*x^4 - 27*x^5 + 28*x^6 - 107*x^7 + 502*x^8 - 1996*x^9 - 1015*x^10 + 39035*x^11 - 76739*x^12 - 1078632*x^13 + ... such that 1 + x = 1/(1 + x*A(x)) + x*(A(x) + 1)/(1 + x*A(x))^2 + x^2*(A(x)^2 + 1)^2 / (1 + x*A(x)^2)^3 + x^3*(A(x)^3 + 1)^3/(1 + x*A(x)^3)^4 + x^4*(A(x)^4 + 1)^4 / (1 + x*A(x)^4)^5 + x^5*(A(x)^5 + 1)^5 / (1 + x*A(x)^5)^6 + ... also 1 + x = 1/(1 - x*A(x)) + x*(A(x) - 1)/(1 - x*A(x))^2 + x^2*(A(x)^2 - 1)^2 / (1 - x*A(x)^2)^3 + x^3*(A(x)^3 - 1)^3/(1 - x*A(x)^3)^4 + x^4*(A(x)^4 - 1)^4 / (1 - x*A(x)^4)^5 + x^5*(A(x)^5 - 1)^5 / (1 - x*A(x)^5)^6 + ... PROG (PARI) {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0); A[#A] = -polcoeff( sum(n=0, #A+1, x^n*(Ser(A)^n + 1)^n/(1 + x*Ser(A)^n)^(n+1) ), #A)); polcoeff(Ser(A), n)} for(n=0, 40, print1(a(n), ", ")) CROSSREFS Sequence in context: A077621 A298736 A336845 * A287989 A081394 A184387 Adjacent sequences:  A324614 A324615 A324616 * A324618 A324619 A324620 KEYWORD sign AUTHOR Paul D. Hanna, Mar 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 15:07 EST 2022. Contains 350607 sequences. (Running on oeis4.)