login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336845
a(n) = A000005(n) * A003961(n), where A003961 is the prime shift towards larger primes, and A000005 gives the number of divisors of n, and also of A003961(n).
7
1, 6, 10, 27, 14, 60, 22, 108, 75, 84, 26, 270, 34, 132, 140, 405, 38, 450, 46, 378, 220, 156, 58, 1080, 147, 204, 500, 594, 62, 840, 74, 1458, 260, 228, 308, 2025, 82, 276, 340, 1512, 86, 1320, 94, 702, 1050, 348, 106, 4050, 363, 882, 380, 918, 118, 3000, 364, 2376, 460, 372, 122, 3780, 134, 444, 1650, 5103, 476, 1560
OFFSET
1,2
COMMENTS
Dirichlet convolution of A003961 with itself.
Sequence is not injective, as it has duplicate values, for example: a(162) = a(243) = 18750. See also comments in A336475.
FORMULA
Multiplicative with a(prime(i)^e) = (e+1) * prime(1+i)^e.
a(n) = A000005(n) * A003961(n).
a(n) = A038040(A003961(n)).
a(n) = A336841(n) + A003973(n).
a(n) is odd if and only if n is a square.
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A336845(n) = (numdiv(n)*A003961(n))
(PARI) A336845(n) = { my(f = factor(n)); prod(i=1, #f~, (1+f[i, 2]) * (nextprime(1+f[i, 1])^f[i, 2])); };
(PARI) A336845(n) = sumdiv(n, d, A003961(d)*A003961(n/d));
CROSSREFS
Cf. also A336841, A336846 [= gcd(a(n),A003973(n))], A336847, A336848.
Sequence in context: A323107 A077621 A298736 * A324617 A359145 A287989
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Aug 06 2020
STATUS
approved