OFFSET
1,3
COMMENTS
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384
Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
FORMULA
From Amiram Eldar, Sep 21 2023: (Start)
Dirichlet g.f.: ((2^s - 2)^2/(4^s - 2^s)) * zeta(s-1)^2.
Sum_{k=1..n} a(k) ~ (n^2/12) * (2*log(n) + 4*gamma + 10*log(2)/3 - 1), where gamma is Euler's constant (A001620). (End)
MATHEMATICA
f[p_, e_] := (e+1)*p^e; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2023 *)
PROG
(PARI) A336475(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i, 1], 1, (1+f[i, 2]) * (f[i, 1]^f[i, 2]))); };
(Python)
from sympy import divisor_count
def A336475(n): return (m:=n>>(~n&n-1).bit_length())*divisor_count(m) # Chai Wah Wu, Jul 13 2022
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Antti Karttunen, Jul 30 2020
STATUS
approved