login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = (e+1)*p^e.
5

%I #28 Sep 21 2023 01:46:11

%S 1,1,6,1,10,6,14,1,27,10,22,6,26,14,60,1,34,27,38,10,84,22,46,6,75,26,

%T 108,14,58,60,62,1,132,34,140,27,74,38,156,10,82,84,86,22,270,46,94,6,

%U 147,75,204,26,106,108,220,14,228,58,118,60,122,62,378,1,260,132,134,34,276,140,142,27,146,74,450,38,308,156

%N Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = (e+1)*p^e.

%C Dirichlet convolution of A000265 with itself, divided by A001511(n).

%C Although for all i, j: A003602(i) = A003602(j) => a(i) = a(j), it is not true that a(i) = a(j) => A003602(i) = A003602(j), because A038040 has a duplicate occurrence of a term on at least two odd positions: A038040(1875) = A038040(3125) = 18750.

%H Antti Karttunen, <a href="/A336475/b336475.txt">Table of n, a(n) for n = 1..16384</a>

%H Antti Karttunen, <a href="/A336475/a336475.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%F a(n) = A038040(A000265(n)).

%F a(n) = A000265(n) * A001227(n).

%F a(n) = (A000005(n) * A000265(n)) / A001511(n). [See the first comment]

%F From _Amiram Eldar_, Sep 21 2023: (Start)

%F Dirichlet g.f.: ((2^s - 2)^2/(4^s - 2^s)) * zeta(s-1)^2.

%F Sum_{k=1..n} a(k) ~ (n^2/12) * (2*log(n) + 4*gamma + 10*log(2)/3 - 1), where gamma is Euler's constant (A001620). (End)

%t f[p_, e_] := (e+1)*p^e; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 21 2023 *)

%o (PARI) A336475(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i,1],1,(1+f[i,2]) * (f[i,1]^f[i,2]))); };

%o (Python)

%o from sympy import divisor_count

%o def A336475(n): return (m:=n>>(~n&n-1).bit_length())*divisor_count(m) # _Chai Wah Wu_, Jul 13 2022

%Y Cf. A000005, A000265, A001227, A001511, A001620, A003602, A038040, A336476.

%K nonn,easy,mult

%O 1,3

%A _Antti Karttunen_, Jul 30 2020