The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038040 a(n) = n*d(n), where d(n) = number of divisors of n (A000005). 103
 1, 4, 6, 12, 10, 24, 14, 32, 27, 40, 22, 72, 26, 56, 60, 80, 34, 108, 38, 120, 84, 88, 46, 192, 75, 104, 108, 168, 58, 240, 62, 192, 132, 136, 140, 324, 74, 152, 156, 320, 82, 336, 86, 264, 270, 184, 94, 480, 147, 300, 204, 312, 106, 432, 220, 448, 228, 232, 118 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Dirichlet convolution of sigma(n) (A000203) with phi(n) (A000010). - Michael Somos, Jun 08 2000 Dirichlet convolution of f(n)=n with itself. See the Apostol reference for Dirichlet convolutions. - Wolfdieter Lang, Sep 09 2008 This function appears in an upper bound of fixed points of the discrete logarithms. For a prime p we denote by F(p) the number of solutions of the congruence g^h == h (mod p) for 1 <= g, h <= (p-1). It is noted in [Bourgain et al. (2008), Eq. (33)] that F(p) <= (p-1) tau(p-1) where tau(n) is the number of divisors of n in N. - Jonathan Vos Post, Mar 03 2011 Sum of all parts of all partitions of n into equal parts. - Omar E. Pol, Jan 18 2013 REFERENCES T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 29 ff. LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 J. Bourgain, S. V. Konyagin and I. E. Shparlinski, Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithms, Int. Math. Res. Notices, 2008 (2008), Art. ID rnn 090, 1-29. Jean Bourgain, Sergei Konyagin and Igor Shparlinski. Distribution on elements of cosets of small subgroups and applications, arXiv:1103.0567 [math.NT], Mar 2 2011. Mikhail R. Gabdullin and Vitalii V. Iudelevich, Numbers of the form kf(k), arXiv:2201.09287 [math.NT] (2022). P. Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 147. [Broken link?] P. Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 147. FORMULA Dirichlet g.f.: zeta(s-1)^2. G.f.: Sum_{n>=1} n*x^n/(1-x^n)^2. - Vladeta Jovovic, Dec 30 2001 Sum_{k=1..n} sigma(gcd(n, k)). Multiplicative with a(p^e) = (e+1)*p^e. - Vladeta Jovovic, Oct 30 2001 Equals A127648 * A127093 * the harmonic series, [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, May 10 2007 Equals row sums of triangle A127528. - Gary W. Adamson, May 21 2007 a(n) = n*A000005(n) = A066186(n) - n*(A000041(n) - A000005(n)) = A066186(n) - n*A144300(n). - Omar E. Pol, Jan 18 2013 a(n) = A000203(n) * A240471(n) + A106315(n). - Reinhard Zumkeller, Apr 06 2014 L.g.f.: Sum_{k>=1} x^k/(1 - x^k) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 13 2017 a(n) = Sum_{d|n} A018804(d). - Amiram Eldar, Jun 23 2020 a(n) = Sum_{d|n} phi(d)*sigma(n/d). - Ridouane Oudra, Jan 21 2021 G.f.: Sum_{n >= 1} q^(n^2)*(n^2 + 2*n*q^n - n^2*q^(2*n))/(1 - q^n)^2. - Peter Bala, Jan 22 2021 a(n) = Sum_{k=1..n} sigma(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021 Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ≍ x/sqrt(log x). That is, there are 0 < A < B such that Ax/sqrt(log x) < f(x) < Bx/sqrt(log x). - Charles R Greathouse IV, Mar 15 2022 EXAMPLE For n = 6 the partitions of 6 into equal parts are , [3, 3], [2, 2, 2], [1, 1, 1, 1, 1, 1]. The sum of all parts is 6 + 3 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 24 equalling 6 times the number of divisors of 6, so a(6) = 24. - Omar E. Pol, May 08 2021 MAPLE with(numtheory): A038040 := n->tau(n)*n; MATHEMATICA a[n_] := DivisorSigma[0, n]*n; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 03 2012 *) PROG (PARI) a(n)=if(n<1, 0, direuler(p=2, n, 1/(1-p*X)^2)[n]) (PARI) a(n)=if(n<1, 0, polcoeff(sum(k=1, n, k*x^k/(x^k-1)^2, x*O(x^n)), n)) /* Michael Somos, Jan 29 2005 */ (PARI) a(n) = n*numdiv(n); \\ Michel Marcus, Oct 24 2020 (MuPAD) n*numlib::tau (n)\$ n=1..90 // Zerinvary Lajos, May 13 2008 (Haskell) a038040 n = a000005 n * n  -- Reinhard Zumkeller, Jan 21 2014 (Python) from sympy import divisor_count as d def a(n): return n*d(n) print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Mar 15 2022 CROSSREFS Cf. A000005, A000010, A000203, A018804, A029935, A064987, A062952. Cf. A127648, A127093, A127528. Cf. A038044, A143127 (partial sums), A328722 (Dirichlet inverse). Column 1 of A329323. Sequence in context: A110758 A189765 A074162 * A143356 A058270 A332934 Adjacent sequences:  A038037 A038038 A038039 * A038041 A038042 A038043 KEYWORD nonn,easy,mult AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 13:46 EDT 2022. Contains 357062 sequences. (Running on oeis4.)