login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347130
a(n) = Sum_{d|n} d * A003415(n/d), where A003415 is the arithmetic derivative.
13
0, 1, 1, 6, 1, 10, 1, 24, 9, 14, 1, 48, 1, 18, 16, 80, 1, 63, 1, 72, 20, 26, 1, 176, 15, 30, 54, 96, 1, 124, 1, 240, 28, 38, 24, 270, 1, 42, 32, 272, 1, 164, 1, 144, 117, 50, 1, 560, 21, 135, 40, 168, 1, 324, 32, 368, 44, 62, 1, 552, 1, 66, 153, 672, 36, 244, 1, 216, 52, 236, 1, 936, 1, 78, 165, 240, 36, 284, 1, 880
OFFSET
1,4
COMMENTS
Dirichlet convolution of the identity function (A000027) with the arithmetic derivative of n (A003415).
Dirichlet convolution of Euler phi (A000010) with A319684.
FORMULA
a(n) = Sum_{d|n} d * A003415(n/d).
a(n) = Sum_{d|n} A000010(n/d) * A319684(d).
a(n) = Sum_{d|n} A347131(d).
a(n) = A003557(n) * A347129(n).
MATHEMATICA
Table[DivisorSum[n, #*(If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &[n/#]) &], {n, 80}] (* Michael De Vlieger, Oct 21 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A347130(n) = sumdiv(n, d, d*A003415(n/d));
CROSSREFS
Inverse Möbius transform of A347131.
Sequence in context: A097186 A329047 A363316 * A070533 A336475 A082744
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 23 2021
STATUS
approved