login
A347131
a(n) = Sum_{d|n} phi(n/d) * A003415(d), where A003415 is the arithmetic derivative and phi is Euler totient function
10
0, 1, 1, 5, 1, 8, 1, 18, 8, 12, 1, 33, 1, 16, 14, 56, 1, 45, 1, 53, 18, 24, 1, 110, 14, 28, 45, 73, 1, 87, 1, 160, 26, 36, 22, 169, 1, 40, 30, 182, 1, 119, 1, 113, 93, 48, 1, 328, 20, 107, 38, 133, 1, 216, 30, 254, 42, 60, 1, 337, 1, 64, 125, 432, 34, 183, 1, 173, 50, 183, 1, 538, 1, 76, 135, 193, 34, 215, 1, 552, 216
OFFSET
1,4
COMMENTS
Dirichlet convolution of A000010 with A003415.
FORMULA
a(n) = Sum_{d|n} A000010(n/d) * A003415(d).
a(n) = Sum_{d|n} A008683(n/d) * A347130(d).
a(n) = Sum_{k=1..n} A003415(gcd(n,k)). - Antti Karttunen, Sep 02 2021
MATHEMATICA
f[p_, e_] := e/p; d[1] = 0; d[n_] := n * Plus @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, d[#] * EulerPhi[n/#] &]; Array[a, 100] (* Amiram Eldar, Sep 03 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A347131(n) = sumdiv(n, d, A003415(n/d)*eulerphi(d));
(PARI) A347131(n) = sum(k=1, n, A003415(gcd(n, k))); \\ (Slow) - Antti Karttunen, Sep 02 2021
CROSSREFS
Möbius transform of A347130.
Sequence in context: A363514 A347955 A349133 * A350515 A073116 A201525
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 23 2021
STATUS
approved