login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347132
a(n) = Sum_{d|n} A001615(n/d) * A003415(d), where A003415 is the arithmetic derivative and A001615 is Dedekind psi function.
7
0, 1, 1, 7, 1, 12, 1, 30, 10, 16, 1, 65, 1, 20, 18, 104, 1, 83, 1, 93, 22, 28, 1, 254, 16, 32, 63, 121, 1, 167, 1, 320, 30, 40, 26, 391, 1, 44, 34, 374, 1, 215, 1, 177, 143, 52, 1, 840, 22, 165, 42, 205, 1, 450, 34, 494, 46, 64, 1, 827, 1, 68, 183, 912, 38, 311, 1, 261, 54, 295, 1, 1430, 1, 80, 197, 289, 38, 359
OFFSET
1,4
COMMENTS
Dirichlet convolution of Dedekind psi function (A001615) with the arithmetic derivative (A003415).
FORMULA
a(n) = Sum_{d|n} A001615(n/d) * A003415(d).
MATHEMATICA
Table[DivisorSum[n, DirichletConvolve[j, MoebiusMu[j]^2, j, n/#]*If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &], {n, 78}] (* Michael De Vlieger, Oct 19 2021, after Jan Mangaldan at A001615 *)
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A347132(n) = sumdiv(n, d, A001615(n/d)*A003415(d));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 23 2021
STATUS
approved