login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349173
Dirichlet convolution of A003415 with A003959, where A003415 is the arithmetic derivative and A003959 is fully multiplicative with a(p) = (p+1).
8
0, 1, 1, 7, 1, 12, 1, 33, 10, 16, 1, 68, 1, 20, 18, 131, 1, 87, 1, 96, 22, 28, 1, 296, 16, 32, 67, 124, 1, 167, 1, 473, 30, 40, 26, 449, 1, 44, 34, 428, 1, 215, 1, 180, 147, 52, 1, 1128, 22, 171, 42, 208, 1, 510, 34, 560, 46, 64, 1, 881, 1, 68, 187, 1611, 38, 311, 1, 264, 54, 295, 1, 1871, 1, 80, 203, 292, 38, 359
OFFSET
1,4
LINKS
FORMULA
a(n) = Sum_{d|n} A003415(d) * A003959(n/d).
a(n) = Sum_{d|n} A349133(d) * A349356(n/d). - Antti Karttunen, Nov 16 2021
For all n >= 1, a(n) >= A349133(n).
MATHEMATICA
f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a1[1] = 0; a1[n_] := n*Plus @@ (f1 @@@ FactorInteger[n]); a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, a1[#] * a2[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
A349173(n) = sumdiv(n, d, A003415(d)*A003959(n/d));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 09 2021
STATUS
approved