The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A349171 a(n) = Sum_{d|n} phi(d) * A003959(n/d), where A003959 is fully multiplicative with a(p) = (p+1), and phi is Euler totient function. 7
 1, 4, 6, 14, 10, 24, 14, 46, 30, 40, 22, 84, 26, 56, 60, 146, 34, 120, 38, 140, 84, 88, 46, 276, 80, 104, 138, 196, 58, 240, 62, 454, 132, 136, 140, 420, 74, 152, 156, 460, 82, 336, 86, 308, 300, 184, 94, 876, 154, 320, 204, 364, 106, 552, 220, 644, 228, 232, 118, 840, 122, 248, 420, 1394, 260, 528, 134, 476, 276 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Dirichlet convolution of A003959 with Euler totient function phi, A000010. Möbius transform of A349170. LINKS Antti Karttunen, Table of n, a(n) for n = 1..20000 FORMULA a(n) = Sum_{d|n} A000010(d) * A003959(n/d). a(n) = Sum_{d|n} A008683(d) * A349170(n/d). a(n) = Sum_{k=1..n} A003959(gcd(n, k)). a(n) = A018804(n) + A349141(n). For all n >= 1, a(n) >= A349131(n). Multiplicative with a(p^e) = p*(p+1)^e - (p-1)*p^e. - Amiram Eldar, Nov 09 2021 MATHEMATICA f[p_, e_] := p*(p + 1)^e - (p - 1)*p^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *) PROG (PARI) A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); }; A349171(n) = sumdiv(n, d, eulerphi(d)*A003959(n/d)); CROSSREFS Cf. A000010, A003959, A018804, A349141, A349170 (inverse Möbius transform), A349172, A349131. Sequence in context: A365963 A095867 A253535 * A338658 A344224 A310601 Adjacent sequences: A349168 A349169 A349170 * A349172 A349173 A349174 KEYWORD nonn,mult AUTHOR Antti Karttunen, Nov 09 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 19:27 EDT 2024. Contains 374334 sequences. (Running on oeis4.)