login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349170
a(n) = Sum_{d|n} d * A003959(n/d), where A003959 is fully multiplicative with a(p) = (p+1).
7
1, 5, 7, 19, 11, 35, 15, 65, 37, 55, 23, 133, 27, 75, 77, 211, 35, 185, 39, 209, 105, 115, 47, 455, 91, 135, 175, 285, 59, 385, 63, 665, 161, 175, 165, 703, 75, 195, 189, 715, 83, 525, 87, 437, 407, 235, 95, 1477, 169, 455, 245, 513, 107, 875, 253, 975, 273, 295, 119, 1463, 123, 315, 555, 2059, 297, 805, 135, 665
OFFSET
1,2
COMMENTS
Dirichlet convolution of A003959 with the identity function, A000027.
Dirichlet convolution of sigma (A000203) with A003968.
LINKS
FORMULA
a(n) = Sum_{d|n} d * A003959(n/d).
a(n) = Sum_{d|n} A349171(d).
a(n) = Sum_{d|n} A000203(d) * A003968(n/d).
a(n) = A038040(n) + A349140(n).
For all n >= 1, a(n) >= A349129(n) >= A349130(n).
Multiplicative with a(p^e) = (p+1)^(e+1) - p^(e+1). - Amiram Eldar, Nov 09 2021
MATHEMATICA
f[p_, e_] := (p + 1)^(e + 1) - p^(e + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
A349170(n) = sumdiv(n, d, d*A003959(n/d));
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Nov 09 2021
STATUS
approved