login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028319
Distinct odd elements in the 5-Pascal triangle A028313.
5
1, 5, 7, 19, 9, 27, 65, 11, 101, 57, 147, 231, 13, 69, 273, 15, 355, 855, 111, 451, 2277, 17, 127, 1661, 3487, 5379, 689, 2223, 11583, 833, 7371, 20449, 181, 995, 3745, 10283, 21385, 34463, 43615, 21, 201, 1377, 23, 1599, 7293, 267, 1843, 31977, 25
OFFSET
0,2
LINKS
MATHEMATICA
DeleteDuplicates[Table[If[n<2, 1, Binomial[n, k] +3*Binomial[n-2, k-1]], {n, 0, 30}, {k, 0, n}]//Flatten]//Select[OddQ] (* G. C. Greubel, Jul 13 2024 *)
PROG
(SageMath)
def A028323(n, k): return 1 if n<2 else binomial(n, k) + 3*binomial(n-2, k-1)
b=flatten([[A028323(n, k) for k in range(n+1)] for n in range(31)])
def a(seq): # order preserving
nd = [] # no duplicates
[nd.append(i) for i in seq if not nd.count(i) and i%2==1]
return nd
a(b) # A028319 # G. C. Greubel, Jul 13 2024
KEYWORD
nonn
EXTENSIONS
More terms from James A. Sellers, Dec 08 1999
STATUS
approved